<table>
<thead>
<tr>
<th>Clip No</th>
<th>Name of clip</th>
<th>Tier</th>
<th>Grades</th>
<th>Pg No</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Factors, Multiples and Primes</td>
<td>F and H</td>
<td>D</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>Evaluate powers</td>
<td>F and H</td>
<td>D</td>
<td>45</td>
</tr>
<tr>
<td>46</td>
<td>Understand squares, cubes, roots</td>
<td>F and H</td>
<td>D</td>
<td>45</td>
</tr>
<tr>
<td>47</td>
<td>Equivalent fractions</td>
<td>F and H</td>
<td>D</td>
<td>46</td>
</tr>
<tr>
<td>48</td>
<td>Simplification of fractions</td>
<td>F and H</td>
<td>D</td>
<td>46</td>
</tr>
<tr>
<td>49</td>
<td>Put fractions in order</td>
<td>F and H</td>
<td>D</td>
<td>46</td>
</tr>
<tr>
<td>50</td>
<td>Value for money</td>
<td>F and H</td>
<td>D</td>
<td>47</td>
</tr>
<tr>
<td>51</td>
<td>Percentage of an amount with a calculator</td>
<td>F and H</td>
<td>D</td>
<td>48</td>
</tr>
<tr>
<td>52</td>
<td>Percentage of an amount without a calculator</td>
<td>F and H</td>
<td>D</td>
<td>48</td>
</tr>
<tr>
<td>53</td>
<td>Change to a percentage with a calculator</td>
<td>F and H</td>
<td>D</td>
<td>49</td>
</tr>
<tr>
<td>54</td>
<td>Change to a percentage without a calculator</td>
<td>F and H</td>
<td>D</td>
<td>49</td>
</tr>
<tr>
<td>55</td>
<td>Find a fraction of an amount</td>
<td>F and H</td>
<td>D</td>
<td>50</td>
</tr>
<tr>
<td>56</td>
<td>Addition and subtraction of fractions</td>
<td>F and H</td>
<td>D</td>
<td>51</td>
</tr>
<tr>
<td>57</td>
<td>Multiply and divide fractions</td>
<td>F and H</td>
<td>D</td>
<td>52</td>
</tr>
<tr>
<td>58</td>
<td>Change fractions to decimals</td>
<td>F and H</td>
<td>D</td>
<td>53</td>
</tr>
<tr>
<td>59</td>
<td>BODMAS</td>
<td>F and H</td>
<td>D</td>
<td>54</td>
</tr>
<tr>
<td>60</td>
<td>Long Multiplication of Decimals</td>
<td>F and H</td>
<td>D</td>
<td>55</td>
</tr>
<tr>
<td>61</td>
<td>Ratio</td>
<td>F and H</td>
<td>D</td>
<td>56</td>
</tr>
<tr>
<td>62</td>
<td>Recipe type ratio questions</td>
<td>F and H</td>
<td>D</td>
<td>57</td>
</tr>
<tr>
<td>63</td>
<td>Hard calculator questions</td>
<td>F and H</td>
<td>D</td>
<td>58</td>
</tr>
<tr>
<td>64</td>
<td>Real-life money questions</td>
<td>F and H</td>
<td>D</td>
<td>59</td>
</tr>
<tr>
<td>65</td>
<td>Generate a sequence from the nth term</td>
<td>F and H</td>
<td>D</td>
<td>60</td>
</tr>
<tr>
<td>66</td>
<td>Substitution</td>
<td>F and H</td>
<td>D</td>
<td>61</td>
</tr>
<tr>
<td>67</td>
<td>Parallel lines</td>
<td>F and H</td>
<td>D</td>
<td>62</td>
</tr>
<tr>
<td>68</td>
<td>Angle sum of a triangle</td>
<td>F and H</td>
<td>63-64</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Properties of special triangles</td>
<td>F and H</td>
<td>63-64</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Finding angles of regular polygons</td>
<td>F and H</td>
<td>D</td>
<td>65</td>
</tr>
<tr>
<td>71</td>
<td>Area of circle</td>
<td>F and H</td>
<td>D</td>
<td>66</td>
</tr>
<tr>
<td>72</td>
<td>Circumference of circle</td>
<td>F and H</td>
<td>D</td>
<td>67</td>
</tr>
<tr>
<td>73</td>
<td>Area of compound shapes</td>
<td>F and H</td>
<td>D</td>
<td>68</td>
</tr>
<tr>
<td>74</td>
<td>Rotations</td>
<td>F and H</td>
<td>D</td>
<td>69</td>
</tr>
<tr>
<td>75</td>
<td>Reflections</td>
<td>F and H</td>
<td>D</td>
<td>70</td>
</tr>
<tr>
<td>76</td>
<td>Enlargements</td>
<td>F and H</td>
<td>D</td>
<td>71</td>
</tr>
<tr>
<td>77</td>
<td>Translations</td>
<td>F and H</td>
<td>D</td>
<td>72</td>
</tr>
<tr>
<td>78</td>
<td>Find the mid-point of a line</td>
<td>F and H</td>
<td>D</td>
<td>73</td>
</tr>
<tr>
<td>79</td>
<td>Measuring and drawing angles</td>
<td>F and H</td>
<td>D</td>
<td>74</td>
</tr>
<tr>
<td>80</td>
<td>Drawing triangles</td>
<td>F and H</td>
<td>D</td>
<td>75</td>
</tr>
<tr>
<td>81</td>
<td>Plans and elevations</td>
<td>F and H</td>
<td>D</td>
<td>76</td>
</tr>
<tr>
<td>82</td>
<td>Nets</td>
<td>F and H</td>
<td>D</td>
<td>77</td>
</tr>
<tr>
<td>83</td>
<td>Symmetries</td>
<td>F and H</td>
<td>D</td>
<td>78</td>
</tr>
<tr>
<td>84</td>
<td>Questionnaires and data collection</td>
<td>F and H</td>
<td>D</td>
<td>79</td>
</tr>
<tr>
<td>85</td>
<td>Two-way tables</td>
<td>F and H</td>
<td>D</td>
<td>80</td>
</tr>
<tr>
<td>86</td>
<td>Pie charts</td>
<td>F and H</td>
<td>D</td>
<td>81</td>
</tr>
<tr>
<td>87</td>
<td>Scatter graphs</td>
<td>F and H</td>
<td>D</td>
<td>82</td>
</tr>
<tr>
<td>88</td>
<td>Frequency diagrams</td>
<td>F and H</td>
<td>D</td>
<td>83</td>
</tr>
<tr>
<td>89</td>
<td>Stem and leaf diagrams</td>
<td>F and H</td>
<td>D</td>
<td>84</td>
</tr>
<tr>
<td>90</td>
<td>Simple probability</td>
<td>F and H</td>
<td>D</td>
<td>85A</td>
</tr>
<tr>
<td>91</td>
<td>Mutually Exclusive Events</td>
<td>F and H</td>
<td>D</td>
<td>85B</td>
</tr>
<tr>
<td>Clip No</td>
<td>Name of clip</td>
<td>Tier</td>
<td>Grades</td>
<td>Pg No</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>92</td>
<td>Overview of percentages</td>
<td>F and H</td>
<td>C</td>
<td>86</td>
</tr>
<tr>
<td>93</td>
<td>Increase/decrease by a percentage</td>
<td>F and H</td>
<td>C</td>
<td>87</td>
</tr>
<tr>
<td>94</td>
<td>Ratio</td>
<td>F and H</td>
<td>C</td>
<td>88</td>
</tr>
<tr>
<td>95</td>
<td>Products of prime factors</td>
<td>F and H</td>
<td>C</td>
<td>89</td>
</tr>
<tr>
<td>96</td>
<td>LCM and HCF</td>
<td>F and H</td>
<td>C</td>
<td>89</td>
</tr>
<tr>
<td>97</td>
<td>Using place value</td>
<td>F and H</td>
<td>C</td>
<td>90</td>
</tr>
<tr>
<td>98</td>
<td>Recurring decimals into fractions</td>
<td>F and H</td>
<td>C</td>
<td>91</td>
</tr>
<tr>
<td>99</td>
<td>Four rules of negatives</td>
<td>F and H</td>
<td>C</td>
<td>92</td>
</tr>
<tr>
<td>100</td>
<td>Division by 2-digit decimals</td>
<td>F and H</td>
<td>C</td>
<td>92</td>
</tr>
<tr>
<td>101</td>
<td>Estimate answers</td>
<td>F and H</td>
<td>C</td>
<td>93</td>
</tr>
<tr>
<td>102</td>
<td>Algebraic simplification</td>
<td>F and H</td>
<td>C</td>
<td>94</td>
</tr>
<tr>
<td>103</td>
<td>Expanding & simplifying brackets</td>
<td>F and H</td>
<td>C</td>
<td>95</td>
</tr>
<tr>
<td>104</td>
<td>Factorisation</td>
<td>F and H</td>
<td>C</td>
<td>96</td>
</tr>
<tr>
<td>105</td>
<td>Solving equations</td>
<td>F and H</td>
<td>C</td>
<td>97</td>
</tr>
<tr>
<td>106</td>
<td>Forming equations</td>
<td>F and H</td>
<td>C</td>
<td>98</td>
</tr>
<tr>
<td>107</td>
<td>Changing the subject of a formula</td>
<td>F and H</td>
<td>C</td>
<td>99</td>
</tr>
<tr>
<td>108</td>
<td>Inequalities</td>
<td>F and H</td>
<td>C</td>
<td>100</td>
</tr>
<tr>
<td>109</td>
<td>Solving inequalities</td>
<td>F and H</td>
<td>C</td>
<td>101</td>
</tr>
<tr>
<td>110</td>
<td>Trial and improvement</td>
<td>F and H</td>
<td>C</td>
<td>102</td>
</tr>
<tr>
<td>111</td>
<td>Index Notation for Multiplication & Division</td>
<td>F and H</td>
<td>C</td>
<td>103</td>
</tr>
<tr>
<td>112</td>
<td>Find the Nth term</td>
<td>F and H</td>
<td>C</td>
<td>104</td>
</tr>
<tr>
<td>113</td>
<td>Drawing straight line graphs</td>
<td>F and H</td>
<td>C</td>
<td>105</td>
</tr>
<tr>
<td>114</td>
<td>Equation of a straight line</td>
<td>F and H</td>
<td>C</td>
<td>106</td>
</tr>
<tr>
<td>115</td>
<td>Simultaneous Equations Graphs</td>
<td>F and H</td>
<td>C</td>
<td>107</td>
</tr>
<tr>
<td>116</td>
<td>Drawing Quadratic Graphs</td>
<td>F and H</td>
<td>C</td>
<td>108</td>
</tr>
<tr>
<td>117</td>
<td>Real-life Graphs</td>
<td>F and H</td>
<td>C</td>
<td>109</td>
</tr>
<tr>
<td>118</td>
<td>Pythagoras' Theorem</td>
<td>F and H</td>
<td>C</td>
<td>110</td>
</tr>
<tr>
<td>119</td>
<td>Pythagoras - line on a graph</td>
<td>F and H</td>
<td>C</td>
<td>111</td>
</tr>
<tr>
<td>120</td>
<td>Surface area of cuboids</td>
<td>F and H</td>
<td>C</td>
<td>112</td>
</tr>
<tr>
<td>121</td>
<td>Surface area of triangular prisms</td>
<td>F and H</td>
<td>C</td>
<td>113</td>
</tr>
<tr>
<td>122</td>
<td>Volume of a prism</td>
<td>F and H</td>
<td>C</td>
<td>114</td>
</tr>
<tr>
<td>123</td>
<td>Similar shapes</td>
<td>F and H</td>
<td>C</td>
<td>115</td>
</tr>
<tr>
<td>124</td>
<td>Converting metric units</td>
<td>F and H</td>
<td>C</td>
<td>116</td>
</tr>
<tr>
<td>125</td>
<td>Bounds</td>
<td>F and H</td>
<td>C</td>
<td>117</td>
</tr>
<tr>
<td>126</td>
<td>Compound measures</td>
<td>F and H</td>
<td>C</td>
<td>118</td>
</tr>
<tr>
<td>127</td>
<td>Bisecting a line</td>
<td>F and H</td>
<td>C</td>
<td>119</td>
</tr>
<tr>
<td>128</td>
<td>Drawing a perpendicular to a line</td>
<td>F and H</td>
<td>C</td>
<td>120</td>
</tr>
<tr>
<td>129</td>
<td>Bisecting an angle</td>
<td>F and H</td>
<td>C</td>
<td>121</td>
</tr>
<tr>
<td>130</td>
<td>Loci</td>
<td>F and H</td>
<td>C</td>
<td>122-123</td>
</tr>
<tr>
<td>131</td>
<td>Bearings</td>
<td>F and H</td>
<td>C</td>
<td>124</td>
</tr>
<tr>
<td>132</td>
<td>Experimental probabilities</td>
<td>F and H</td>
<td>C</td>
<td>125</td>
</tr>
<tr>
<td>133</td>
<td>Averages from a table</td>
<td>F and H</td>
<td>C</td>
<td>126</td>
</tr>
<tr>
<td>134</td>
<td>Questionnaires</td>
<td>F and H</td>
<td>C</td>
<td>127</td>
</tr>
<tr>
<td>Clip No</td>
<td>Name of clip</td>
<td>Tier</td>
<td>Grades</td>
<td>Pg No</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>135</td>
<td>Standard form</td>
<td>H</td>
<td>B</td>
<td>128A-B</td>
</tr>
<tr>
<td>136</td>
<td>Percentage increase/decrease</td>
<td>H</td>
<td>B</td>
<td>129</td>
</tr>
<tr>
<td>137</td>
<td>Compound interest/depreciation</td>
<td>H</td>
<td>B</td>
<td>130</td>
</tr>
<tr>
<td>138</td>
<td>Reverse percentage</td>
<td>H</td>
<td>B</td>
<td>131</td>
</tr>
<tr>
<td>139</td>
<td>Four rules of fractions</td>
<td>H</td>
<td>B</td>
<td>132</td>
</tr>
<tr>
<td>140</td>
<td>Solving quadratics by factorising</td>
<td>H</td>
<td>B</td>
<td>133</td>
</tr>
<tr>
<td>141</td>
<td>Difference of two squares</td>
<td>H</td>
<td>B</td>
<td>134</td>
</tr>
<tr>
<td>142</td>
<td>Simultaneous linear equations</td>
<td>H</td>
<td>B</td>
<td>135</td>
</tr>
<tr>
<td>143</td>
<td>Understanding (y = mx + c)</td>
<td>H</td>
<td>B</td>
<td>136</td>
</tr>
<tr>
<td>144</td>
<td>Regions</td>
<td>H</td>
<td>B</td>
<td>137</td>
</tr>
<tr>
<td>145</td>
<td>Graphs of cubic and reciprocal functions</td>
<td>H</td>
<td>B</td>
<td>138</td>
</tr>
<tr>
<td>146</td>
<td>Recognise the shapes of functions</td>
<td>H</td>
<td>B</td>
<td>139</td>
</tr>
<tr>
<td>147</td>
<td>Trigonometry</td>
<td>H</td>
<td>B</td>
<td>140A-B</td>
</tr>
<tr>
<td>148</td>
<td>3D coordinates</td>
<td>H</td>
<td>B</td>
<td>141</td>
</tr>
<tr>
<td>149</td>
<td>Similar shapes</td>
<td>H</td>
<td>B</td>
<td>142</td>
</tr>
<tr>
<td>150</td>
<td>Circle theorems</td>
<td>H</td>
<td>B</td>
<td>143A-D</td>
</tr>
<tr>
<td>151</td>
<td>Cumulative frequency</td>
<td>H</td>
<td>B</td>
<td>144</td>
</tr>
<tr>
<td>152</td>
<td>Boxplots</td>
<td>H</td>
<td>B</td>
<td>145</td>
</tr>
<tr>
<td>153</td>
<td>Simple tree diagrams</td>
<td>H</td>
<td>B</td>
<td>146</td>
</tr>
<tr>
<td>154</td>
<td>Harder tree diagrams</td>
<td>H</td>
<td>B</td>
<td>147</td>
</tr>
<tr>
<td>155</td>
<td>Recurring decimals</td>
<td>H</td>
<td>A to A*</td>
<td>148</td>
</tr>
<tr>
<td>156</td>
<td>Fractional and negative indices</td>
<td>H</td>
<td>A to A*</td>
<td>149</td>
</tr>
<tr>
<td>157</td>
<td>Surds</td>
<td>H</td>
<td>A to A*</td>
<td>150</td>
</tr>
<tr>
<td>158</td>
<td>Rationalising the denominator</td>
<td>H</td>
<td>A to A*</td>
<td>150</td>
</tr>
<tr>
<td>159</td>
<td>Direct and inverse proportion</td>
<td>H</td>
<td>A to A*</td>
<td>151</td>
</tr>
<tr>
<td>160</td>
<td>Upper and lower bounds</td>
<td>H</td>
<td>A to A*</td>
<td>152</td>
</tr>
<tr>
<td>161</td>
<td>Solving quadratics using the formula</td>
<td>H</td>
<td>A to A*</td>
<td>153</td>
</tr>
<tr>
<td>162</td>
<td>Solving quadratics by completing the square</td>
<td>H</td>
<td>A to A*</td>
<td>154</td>
</tr>
<tr>
<td>163</td>
<td>Algebraic fractions</td>
<td>H</td>
<td>A to A*</td>
<td>155</td>
</tr>
<tr>
<td>164</td>
<td>Rearranging difficult formulae</td>
<td>H</td>
<td>A to A*</td>
<td>156</td>
</tr>
<tr>
<td>165</td>
<td>Sim. equations involving a quadratic</td>
<td>H</td>
<td>A to A*</td>
<td>157</td>
</tr>
<tr>
<td>166</td>
<td>Gradients of parallel and perpendicular lines</td>
<td>H</td>
<td>A to A*</td>
<td>158</td>
</tr>
<tr>
<td>167</td>
<td>Transformation of functions</td>
<td>H</td>
<td>A to A*</td>
<td>159</td>
</tr>
<tr>
<td>168</td>
<td>Graphs of trigonometric functions</td>
<td>H</td>
<td>A to A*</td>
<td>160-161</td>
</tr>
<tr>
<td>169</td>
<td>Transformation of trigonometric functions</td>
<td>H</td>
<td>A to A*</td>
<td>162</td>
</tr>
<tr>
<td>170</td>
<td>Graphs of exponential functions</td>
<td>H</td>
<td>A to A*</td>
<td>163</td>
</tr>
<tr>
<td>171</td>
<td>Enlargement by negative scale factor</td>
<td>H</td>
<td>A to A*</td>
<td>164</td>
</tr>
<tr>
<td>172</td>
<td>Equations of circles and Loci</td>
<td>H</td>
<td>A to A*</td>
<td>165</td>
</tr>
<tr>
<td>173</td>
<td>Sine and Cosine rules</td>
<td>H</td>
<td>A to A*</td>
<td>166</td>
</tr>
<tr>
<td>174</td>
<td>Pythagoras in 3D</td>
<td>H</td>
<td>A to A*</td>
<td>167</td>
</tr>
<tr>
<td>175</td>
<td>Trigonometry in 3D</td>
<td>H</td>
<td>A to A*</td>
<td>168</td>
</tr>
<tr>
<td>176</td>
<td>Areas of triangles using (\frac{1}{2} ab \sin C)</td>
<td>H</td>
<td>A to A*</td>
<td>169</td>
</tr>
<tr>
<td>177</td>
<td>Cones and Spheres</td>
<td>H</td>
<td>A to A*</td>
<td>170</td>
</tr>
<tr>
<td>178</td>
<td>Segments and Frustums</td>
<td>H</td>
<td>A to A*</td>
<td>171</td>
</tr>
<tr>
<td>179</td>
<td>Congruent triangles</td>
<td>H</td>
<td>A to A*</td>
<td>172</td>
</tr>
<tr>
<td>180</td>
<td>Vectors</td>
<td>H</td>
<td>A to A*</td>
<td>173-174</td>
</tr>
<tr>
<td>181</td>
<td>Histograms</td>
<td>H</td>
<td>A to A*</td>
<td>175</td>
</tr>
<tr>
<td>182</td>
<td>Probability ‘And’ and ‘Or’ questions</td>
<td>H</td>
<td>A to A*</td>
<td>176</td>
</tr>
<tr>
<td>183</td>
<td>Stratified sampling</td>
<td>H</td>
<td>A to A*</td>
<td>177</td>
</tr>
</tbody>
</table>
1) Write the factors of
 a) 6 b) 16 c) 18 d) 30
 \[1, 2, 3, 6 \quad 1, 2, 4, 8, 16 \quad 1, 2, 3, 6, 9, 18 \quad 1, 2, 3, 5, 6, 10, 15, 30\]

2) In a pupil’s book the factors of 12 are listed as
 \[1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 12\]
 The above list contains a mistake.
 Cross it out from the list and replace it with the correct number.

3) The factors of 30 and 40 are listed
 \[\text{30: } 1, 2, 3, 5, 6, 10, 15, 30 \quad \text{40: } 1, 2, 4, 5, 8, 10, 20, 40\]
 Write the common factors of 30 and 40 (the numbers that are factors of 30 and 40).
 \[1, 2, 5, 10\]

4) Write the first four multiples of
 a) 3 b) 5 c) 10 d) 15
 \[3, 6, 9, 12 \quad 5, 10, 15, 20 \quad 10, 20, 30, 40 \quad 15, 30, 45, 60\]

5) In a pupil’s book the first 7 multiples of 8 are listed as
 \[8 \quad 16 \quad 22 \quad 32 \quad 40 \quad 48 \quad 54\]
 The above list contains 2 mistakes.
 Cross them out and replace them with the correct numbers.

6) The first five multiples of 4 and 10 are listed
 \[\text{4: } 4, 8, 12, 16, 20 \quad \text{10: } 10, 20, 30, 40, 50\]
 From the two lists above, write the common multiple of 4 and 10.
 \[20\]

7) List the first five prime numbers
 \[2, 3, 5, 7, 11\]

8) Using just this list of numbers:
 \[11 \quad 18 \quad 1 \quad 4 \quad 21 \quad 24 \quad 9 \quad 3 \quad 12 \quad 2 \quad 19\]
 find the following:
 a) The prime numbers \[2, 3, 11, 19\]
 b) The factors of 18 \[1, 2, 3, 9, 18\]
 c) The multiples of 3 \[3, 9, 12, 18, 21, 24\]
1. Evaluate
 a) $7^2 = 49$
 $7 \times 7 = 49$
 b) $2^4 = 16$
 $2 \times 2 \times 2 \times 2 = 16$
 c) $5^2 = 25$
 $5 \times 5 = 25$
 d) $3^3 = 27$
 $3 \times 3 \times 3 = 27$
 e) $1^6 = 1$
 $1 \times 1 \times 1 \times 1 \times 1 \times 1 = 1$

2. Work out the square of
 a) $1^2 = 1$
 b) $2^2 = 4$
 c) $4^2 = 16$
 d) $6^2 = 36$
 e) $11^2 = 121$

3. Work out
 a) $3^2 = 9$
 $3 \times 3 = 9$
 b) $9^2 = 81$
 $9 \times 9 = 81$
 c) $10^2 = 100$
 $10 \times 10 = 100$
 d) $12^2 = 144$
 $12 \times 12 = 144$
 e) $100^2 = 10 000$
 $100 \times 100 = 10 000$

4. Work out the cube of
 a) $1^3 = 1$
 b) $3^3 = 27$
 c) $5^3 = 125$
 d) $6^3 = 216$
 e) $100^3 = 1 000 000$
 $100 \times 100 \times 100 = 1 000 000$

5. Work out
 a) $2^3 = 8$
 $2 \times 2 \times 2 = 8$
 b) $4^3 = 64$
 $4 \times 4 \times 4 = 64$
 c) $10^3 = 1 000$
 $10 \times 10 \times 10 = 1 000$

6. Work out the square root of
 a) $1^1 = 1$
 $1 \times 1 = 1$
 b) $3^1 = 3$
 $3 \times 3 = 9$
 c) $9^1 = 9$
 $9 \times 9 = 81$

7. Work out
 a) $\sqrt{25} = 5$
 $5^2 = 25$
 b) $\sqrt{49} = 7$
 $7^2 = 49$
 c) $\sqrt{121} = 11$
 $11^2 = 121$

8. Work out the cube root of
 a) $27^{\frac{1}{3}} = 3$
 b) $1^\frac{1}{3} = 1$
 c) $125^{\frac{1}{3}} = 5$
 $5^3 = 125$

9. From the following numbers
 4 27 8 64 16 19 100 360 45 3
 Find
 a) The square numbers
 $4^2 = 16$, $6^2 = 36$, $10^2 = 100$
 b) The cube numbers
 $2^3 = 8$, $4^3 = 64$
 c) The square root of 64
 $8^2 = 64$
 d) The cube root of 27
 $3^2 = 27$

10. Match together cards with the same answer
 \[\begin{array}{ccc}
 9^2 & \sqrt{9} & 81 \\
 2^5 & 125 & 32 \\
 5^3 & 3 & \end{array} \]
1) Write down three equivalent fractions for each of these

a) \(\frac{3}{4}, \frac{6}{8}, \frac{9}{12}, \frac{12}{16}\)
b) \(\frac{2}{5}, \frac{4}{10}, \frac{6}{15}, \frac{8}{20}\)
c) \(\frac{7}{8}, \frac{14}{16}, \frac{21}{24}, \frac{28}{32}\)

2) Match together equivalent fractions

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/15</td>
<td>3/5</td>
<td>18/21</td>
</tr>
</tbody>
</table>

3) Find the missing values in these equivalent fractions

a) \(\frac{1}{4} = \frac{2}{8} = \frac{3}{16} = \frac{4}{40}\)
b) \(\frac{6}{9} = \frac{2}{3} = \frac{60}{90} = \frac{48}{66} = \frac{48}{90}\)
c) \(\frac{4}{5} = \frac{12}{15} = \frac{20}{25} = \frac{28}{35} = \frac{48}{60}\)
d) \(\frac{4}{10} = \frac{24}{60} = \frac{2}{5} = \frac{48}{120} = \frac{80}{200}\)

4) Write these fractions in their simplest form

a) \(\frac{24}{48} = \frac{1}{2}\)
b) \(\frac{8}{20} = \frac{2}{5}\)
c) \(\frac{45}{63} = \frac{5}{7}\)
d) \(\frac{39}{45} = \frac{13}{15}\)
e) \(\frac{72}{104} = \frac{9}{13}\)

5) Write these fractions in order of size (smallest first)

a) \(\frac{3}{8}, \frac{9}{16}, \frac{1}{4}, \frac{5}{16}, \frac{1}{8}, \frac{5}{16}, \frac{3}{9}, \frac{9}{16}\)
b) \(\frac{2}{3}, \frac{7}{12}, \frac{3}{4}, \frac{5}{6}, \frac{7}{12}, \frac{2}{3}, \frac{3}{5}, \frac{5}{12}\)

6) Ben spent his pocket money this way:

\(\frac{7}{20}\) on magazines;
\(\frac{4}{10}\) on chocolates;
\(\frac{1}{4}\) on games.

Order the items Ben bought by value (largest first).
chocolates, magazines, games
Show all working
Value for Money

1) Which of the following offer better value for money?
 Working must be shown
 a) 200ml of toothpaste for 50p or 400ml of toothpaste for 90p
 \[\frac{400 \text{ml of toothpaste for £1.00}}{\times 2} \]
 b) 600g of bananas for 70p or 200g of bananas for 22p
 \[\frac{600g \text{ of bananas for 66p}}{\times 3} \]
 c) 2 litres of paint for £1.60 or 5 litres of paint for £3.50
 \[\frac{1 \text{ litre of paint for 80p or 1 litre of paint for 70p}}{\times 2 \quad \times 5} \]
 d) 60 teabags for £1.62 or 40 teabags for £0.96
 \[\frac{120 \text{ teabags for £3.24 or 120 teabags for £2.88}}{\times 2 \quad \times 3} \]

2) Which of these is the best buy?
 Working must be shown

\[
\begin{array}{|c|c|}
\hline
20 \text{ exercise books } & 35 \text{ exercise books } \\
\text{for £4.00} & \text{for £7.80} \\
\hline
\end{array}
\]
\[
\begin{align*}
400 \div 20 &= 20 \\
&= 20 \text{p per book} \\
780 \div 35 &= 22.3 \\
&= 22\text{p per book}
\end{align*}
\]

3) Hamza needs to buy 2 litres of paint.
 At the shop he gets two choices:
 500ml for £2.55 or 1 litre for £4.79.
 Working must be shown
 - 1 litre of paint for £5.10
 a) Work out which of these would be the best buy for Hamza.
 - 1 litre of paint for £4.79
 b) How much does he save if he buys the ‘best buy’ rather than the ‘worst buy’.
 £0.31 or 31p
 \[
 \begin{align*}
 \text{You must show all your working.} & \quad \text{£5.10} \\
 - \quad \text{£4.79} & \quad \text{£0.31}
 \end{align*}
 \]

4) Honey pots are sold in two sizes.
 A small pot costs 45p and weighs 450g.
 \[45 \div 450 = 0.1p \text{ per g} \]
 A large pot costs 80p and weighs 850g.
 \[80 \div 850 = 0.09p \text{ per g} \]
 Which pot of honey is better value for money?
 Large pot at 80p for 850g
 You must show all your working.
Find a Percentage with a Calculator

1) Work out
 a) 21% of 340 71.4
 d) 3.5% of 78.6 2.751
 b) 9% of 2700 243
 e) 80.5% of 3200 2576
 c) 17.5% of 420 73.5
 f) 117.5% of 35 41.125

2) Work out the total cost (including VAT) of the following items.

 Trainers Tennis racquet Football boots
 £45.50 £28.99 £57
 plus 17.5% VAT plus 17.5% VAT plus 17.5% VAT
 £53.46 £34.06 £66.98

3) 850 people attended a festival.
 16% of the people were children.
 Work out the number of children at the festival. 136 children

Find a Percentage Without a Calculator

1) Work out (i) 10% and (ii) 5% and (iii) 15% of:
 a) 200 (i) 20 (ii) 10 (iii) 30
 (ii) 10 (ii) 15 (ii) 4.5
 (iii) 30 (iii) 45 (iii) 67.5
 b) 30 (i) 3 (ii) 1.5 (ii) 3
 (ii) 1.5 (ii) 4.5 (iii) 8.1
 c) 450 (i) 45 (ii) 22.5 (ii) 2.7
 (ii) 22.5 (ii) 67.5 (ii) 8.1
 d) 54 (i) 5.4 (ii) 2.7 (ii) 1.5
 (ii) 2.7 (ii) 67.5 (iii) 8.1

2) Work out
 a) 30% of 280 84
 b) 80% of 3500 2800
 c) 15% of 540 81
 d) 17.5% of 300 52.5
 e) 55% of 700 385
 f) 17.5% of 180 31.5

3) Work out the total cost (including VAT) of the following items.

 100% 10% 5% 2.5%
 +200 +20 +10 +5
 200 235 70.5 1200
 +60 +15 +120 +30
 £235 £70.50 £1410 £1410

4) There are 1300 students at MathsWatch College.
 45% of these students are boys.
 Work out the number of boys. 585 boys
 10% = 130
 40% = 130 × 4 = 520
 5% = 130 ÷ 2 = 65
 520 + 65 = 585
1) In a class of 37 pupils, 22 are boys.
 a) What percentage of the class are boys? \(\frac{22}{37} \times 100 = 59.5\% \)
 b) What percentage of the class are girls? \(\frac{15}{37} \times 100 = 40.5\% \)

2) Sarah sat a mock examination and gained the following marks:
 a) Write each of Sarah’s marks as a percentage.
 b) Which is Sarah’s best subject in terms of percentage score? **English**

3) A brand new car costs £16 500.
 A discount of £2 227.50 is negotiated with the dealer.
 What is the percentage discount? **13.5\%**

Change to a Percentage Without a Calculator

1) Write the following as percentages:
 a) 13 out of 50 \(\frac{13}{50} \times 100 = 26\% \)
 b) 6 out of 20 \(\frac{6}{20} \times 100 = 30\% \)
 c) 17 out of 25 \(\frac{17}{25} \times 100 = 68\% \)
 d) 34 out of 40 \(\frac{34}{40} \times 100 = 85\% \)
 e) 12 out of 80 \(\frac{12}{80} \times 100 = 15\% \)
 f) 27 out of 60 \(\frac{27}{60} \times 100 = 45\% \)

2) In a football tournament, Team A won 16 of the 20 games they played, whilst Team B won 19 of their 25 games.
 What percentage of their games did they each win?
 Team A: 80\% **Team B:** 76\%

3) 60 participants were invited to a conference.
 36 of the participants were females.
 a) Work out the percentage of female participants. **60\%**
 b) What is the percentage of male participants? **40\%**

4) A company has 800 employees.
 440 of these 800 employees are males.
 176 of these 800 employees are under 25 years old.
 a) What percentages of males are employed in this company? **55\%**
 b) What percentage of employees are under 25? **22\%**
1. Work out these amounts.

 a) \(\frac{3}{4}\) of £20 = £15
 b) \(\frac{2}{3}\) of 60 kg = 40 kg
 c) \(\frac{3}{8}\) \times 24 = 9

 d) 150 \times \frac{2}{3} = 100
 e) \(\frac{2}{9}\) of 180 cm = 40 cm
 f) 49 \times \frac{4}{7} = 28

 g) 60 \times \frac{1}{4} = 15
 h) \(\frac{5}{8}\) of £48 = £30
 i) 4000 \times \frac{7}{8} = 3500

2. There are 600 apples on a tree and there are maggots in \(\frac{3}{5}\) of them.
 How many apples have maggots in them? 360 apples

3. Liz and Lee are travelling in a car from Glasgow to Poole (770 km).
 At midday they had already travelled \(\frac{5}{7}\) of the total distance.
 What distance, in km, had they travelled by midday? 550 km

4. A digital camera that cost £49 was sold on eBay for \(\frac{3}{7}\) of the original price.
 What was the selling price? £21

5. Yesterday Thomas travelled a total of 175 miles.
 He travelled \(\frac{2}{5}\) of this distance in the morning.
 How many miles did he travel during the rest of the day? 105 miles

6. Debra received her £15 pocket money on Saturday.
 She spent \(\frac{1}{3}\) of her pocket money on magazines.
 She spent \(\frac{2}{5}\) of her pocket money on a necklace.
 How much of the £15 did she have left? £4
1. Work out the following giving your answer as a fraction in its simplest form
 a) $\frac{3}{5} + \frac{1}{5}$
 b) $\frac{3}{7} + \frac{2}{7}$
 c) $\frac{5}{8} - \frac{3}{8}$
 d) $\frac{7}{13} - \frac{4}{13}$

2. Work out the following giving your answer as a fraction in its simplest form
 a) $\frac{3}{5} + \frac{2}{10}$
 b) $\frac{1}{3} + \frac{2}{9}$
 c) $\frac{13}{20} - \frac{3}{5}$
 d) $\frac{9}{12} - \frac{1}{3}$

3. Change the following to mixed numbers
 a) $\frac{8}{5}$
 b) $\frac{14}{3}$
 c) $\frac{35}{6}$
 d) $\frac{17}{5}$

4. Change the following to top heavy (or improper) fractions
 a) $\frac{2}{7}$
 b) $\frac{3}{4}$
 c) $\frac{31}{5}$
 d) $\frac{23}{9}$

5. Work out the following giving your answer as a fraction in its simplest form
 a) $\frac{2}{3} + \frac{1}{5}$
 b) $\frac{2}{5} + \frac{3}{4}$
 c) $\frac{5}{2} - \frac{2}{3}$
 d) $\frac{7}{12} + \frac{3}{4}$
 e) $\frac{2}{5} + \frac{2}{3}$
 f) $\frac{2}{7} + \frac{1}{2}$
 g) $\frac{9}{2} - \frac{5}{2}$
 h) $\frac{12}{15} - \frac{7}{15}$

6. Ted received his pocket money on Friday.
 He spent $\frac{3}{5}$ of his pocket money on games.
 He spent $\frac{1}{10}$ of his pocket money on magazines.
 What fraction of his pocket money did he have left? $\frac{3}{10}$

8. Maisie buys a bag of flour.
 She uses $\frac{1}{4}$ to bake a cake and $\frac{2}{5}$ to make a loaf.
 a) What fraction of the bag of flour was used? $\frac{13}{20}$
 b) What fraction of the bag of flour is left? $\frac{7}{20}$

9. Work out the total length of this shape.
 Give your answer as a mixed number.
 $\frac{5}{12}$ inches
 $3\frac{1}{2}$ inches
 $2\frac{2}{3}$ inches

Diagram NOT accurately drawn
Work out the following giving your answer as a fraction in its simplest form.

1) \(\frac{4}{5} \times \frac{1}{3} = \frac{4}{15} \)
2) \(\frac{3}{4} \times \frac{2}{3} = \frac{1}{2} \)
3) \(\frac{3}{10} \times \frac{4}{9} = \frac{2}{15} \)
4) \(\frac{3}{7} \times \frac{5}{6} = \frac{5}{14} \)
5) \(\frac{6}{25} \times \frac{15}{18} = \frac{1}{5} \)
6) \(\frac{4}{15} \times \frac{3}{16} = \frac{1}{20} \)
7) \(2\frac{2}{5} \times 3\frac{3}{5} = 9 \)
8) \(1\frac{2}{7} \times 3\frac{1}{7} = 5\frac{1}{2} \)
9) \(4\frac{2}{7} \times \frac{5}{7} = 3\frac{1}{3} \)
10) \(\frac{3}{5} \times 12\frac{1}{2} = 7\frac{1}{2} \)
11) \(\frac{1}{3} + \frac{5}{6} = \frac{2}{5} \)
12) \(\frac{2}{7} + \frac{10}{21} = \frac{3}{5} \)
13) \(\frac{4}{5} + \frac{1}{10} = \frac{1}{2} \)
14) \(\frac{4}{11} + \frac{4}{11} = 1 \)
15) \(\frac{4}{5} \times \frac{8}{9} = \frac{9}{10} \)
16) \(\frac{5}{8} + \frac{10}{19} = 1\frac{3}{16} \)
17) \(1\frac{2}{7} + 2\frac{1}{2} = \frac{2}{3} \)
18) \(3\frac{2}{5} + 2\frac{2}{3} = 1\frac{1}{5} \)
19) \(25 + 2\frac{1}{7} = 11\frac{2}{3} \)
20) \(\frac{2}{3} + 2\frac{2}{7} = \frac{3}{10} \)
Change a Fraction to a Decimal

Write the following fractions as decimals

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{10})</td>
<td>0.3</td>
</tr>
<tr>
<td>(\frac{7}{10})</td>
<td>0.7</td>
</tr>
<tr>
<td>(\frac{9}{100})</td>
<td>0.09</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>0.5</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>0.75</td>
</tr>
<tr>
<td>(\frac{2}{5})</td>
<td>0.4</td>
</tr>
<tr>
<td>(\frac{7}{20})</td>
<td>0.35</td>
</tr>
<tr>
<td>(\frac{1}{3})</td>
<td>0.3333</td>
</tr>
<tr>
<td>(\frac{1}{8})</td>
<td>0.125</td>
</tr>
<tr>
<td>(\frac{5}{8})</td>
<td>0.625</td>
</tr>
</tbody>
</table>
Work out

1) \(6 \times 5 + 2 = 32 \)
 \(30 + 2 = 32 \)

2) \(2 + 6 \times 5 = 32 \)
 \(2 + 30 = 32 \)

3) \(35 - 4 \times 3 = 23 \)
 \(35 - 12 = 23 \)

4) \(48 \div (14 - 2) = 4 \)
 \(48 \div 12 = 4 \)

5) \(27 \div (3 + 6) = 3 \)
 \(27 \div 9 = 3 \)

6) \(27 \div 3 + 6 = 15 \)
 \(9 + 6 = 15 \)

7) \((9 + 2) \times 2 + 5 = 27 \)
 \(11 \times 2 + 5 , 22 + 5 = 27 \)

8) \(4 \times (1 + 4) - 6 = 14 \)
 \(4 \times 5 - 6 , 20 - 6 = 14 \)

9) \(6 \times 4 - 3 \times 5 = 9 \)
 \(24 - 15 = 9 \)

10) \(\frac{9 + 3}{4 + 2} = 2 \)
 \(\frac{12}{6} = 2 \)

11) \(\frac{23 + 9}{7 - 3} = 8 \)
 \(\frac{32}{4} = 8 \)

12) \(\frac{7 - 2^2}{4^2 - 15} = 3 \)
 \(\frac{7 - 4}{16 - 15} , \frac{3}{1} = 3 \)

13) \(\frac{5^2 + 3}{2 \times 7} = 2 \)
 \(\frac{25 + 3}{14} , \frac{28}{14} = 2 \)

14) \(\frac{5 \times 6 - 4}{13} = 2 \)
 \(\frac{30 - 4}{13} , \frac{26}{13} = 2 \)

15) \(\frac{8 \times 2 - 4}{3 + 1^2} = 3 \)
 \(\frac{16 - 4}{3 + 1} , \frac{12}{4} = 3 \)

16) \(\frac{12 - 3 \times 2}{14 \div 7} = 3 \)
 \(\frac{12 - 6}{2} , \frac{6}{2} = 3 \)

17) \(\frac{20 - 3^3}{10 - (5 + 4)} = 11 \)
 \(\frac{20 - 9}{10 - 9} , \frac{11}{1} = 11 \)

18) \(\frac{3 + 9 \times 8}{1 + 6 \times 4} = 3 \)
 \(\frac{3 + 72}{1 + 24} , \frac{75}{25} = 3 \)
Long Multiplication of Decimals

1. Work out
 a) $7 \times 4.3 = 30.1$
 b) $5 \times 3.16 = 15.8$
 c) $2.3 \times 1.2 = 2.76$
 d) $7.2 \times 42.5 = 306$
 e) $12.5 \times 0.59 = 7.375$
 f) $0.652 \times 0.37 = 0.24124$
 g) $5.62 \times 9 = 50.58$
 h) $26.7 \times 4.9 = 130.83$
 i) $1.56 \times 0.059 = 0.09204$

2. David buys 5 books for £8.75 each.
 How much does he pay? **£43.75**

3. A DVD costs £12.25.
 Work out the cost of 9 of these DVDs. **£110.25**

4. John takes 27 boxes out of his van.
 The weight of each box is 41.7 kg.
 Work out the total weight of the 27 boxes. **1125.9 kg**

5. Nina bought 43 teddy bears at £9.35 each.
 Work out the total amount she paid. **£402.05**

 He buys
 - 0.5 kg of pears at £0.84 per kg. **£0.42**
 - 2.5 kg of grapes at £1.89 per kg. **£4.73**
 - 6 kg of potatoes at £0.25 per kg. **£1.50**
 How much does he pay? **£6.65**

7. Brian hires a car for 3 days.
 Tariffs are:
 - £44.80 for the first day and **£44.80**
 - £37.50 for each extra day. **£37.50**
 How much does he pay? **£119.80**
1. Write the following ratios in their simplest form
 a) 6 : 9 → 2 : 3
 b) 10 : 5 → 2 : 1
 c) 7 : 21 → 1 : 3
 d) 4 : 24 → 1 : 6
 e) 12 : 40 → 3 : 10
 f) 18 : 27 → 2 : 3
 g) 4 : 2 : 8 → 2 : 1 : 4
 h) 18 : 63 : 9 → 2 : 7 : 1

2. Complete the missing value in these equivalent ratios
 a) 3 : 5 = 12 : 20
 b) 4 : 9 = 16 : 27
 c) 8 : 7 = 16 : 14
 d) 2 : 3 = 4 : 6

3. Match together cards with equivalent ratios:
 - 3 : 4
 - 10 : 5
 - 50 : 100
 - 2 : 1
 - 5 : 2
 - 15 : 20
 - 15 : 6
 - 1 : 2

4. The ratio of girls to boys in a class is 4 : 5.
 a) What fraction of the class are girls? \(\frac{4}{9} \)
 b) What fraction of the class are boys? \(\frac{5}{9} \)

5. A model of a plane is made using a scale of 1 : 5.
 a) If the real length of the plane is 20m, what is the length of the model in metres? 4m
 b) If the wings of the model are 100cm long, what is the real length of the wings in metres? 5m

6. Share out £250 in the following ratios:
 a) 1 : 4
 b) 2 : 3
 c) 7 : 3
 d) 9 : 12 : 4
 - £50 and £200
 - £100 and £150
 - £175 and £75
 - £90 and £120 and £40

7. Share out £80 between Tom and Jerry in the ratio 3 : 2. Tom gets £48, Jerry gets £32
 - 3 + 2 = 5
 - 80 ÷ 5 = 16
 - 3 × 16 = 48
 - 2 × 16 = 32

8. A box of chocolates has 3 milk chocolates for every 2 white chocolates.
 There are 60 chocolates in the box.
 Work out how many white chocolates are in the box. 24 white chocolates
 - 3 + 2 = 5
 - 60 ÷ 5 = 12
 - 2 × 12 = 24

9. In a bracelet, the ratio of silver beads to gold beads is 5 : 2.
 The bracelet has 25 silver beads.
 How many gold beads are in the bracelet? 10 gold beads
 - 25 × 5 = 5
 - 2 × 5 = 10

10. To make mortar you mix 1 shovel of cement with 5 shovels of sand.
 How much sand do you need to make 30 shovels of mortar? 25 shovels of sand
 - 1 + 5 = 6
 - 30 ÷ 6 = 5
 - 5 × 5 = 25
1) Here are the ingredients for making a vegetable soup for 6 people:

| 2 carrots | 1 onion | 800ml stock | 50g lentils | 4g thyme |

Work out the amount of each ingredient for

a) 12 people
 - 4 carrots
 - 2 onions
 - 1600ml stock
 - 100g lentils
 - 8g thyme

b) 9 people
 - 3 carrots
 - 1½ onions
 - 1200ml stock
 - 75g lentils
 - 6g thyme

c) 30 people
 - 10 carrots
 - 5 onions
 - 4000ml stock
 - 250g lentils
 - 20g thyme

2) Here are the ingredients for making apple crumble for 4 people:

| 80g plain flour | 60g ground almonds | 90g sugar | 60g butter | 4 apples |

Work out the amount of each ingredient for

a) 2 people
 - 40g plain flour
 - 30g ground almonds
 - 45g sugar
 - 30g butter
 - 2 apples

b) 6 people
 - 120g plain flour
 - 90g ground almonds
 - 135g sugar
 - 90g butter
 - 6 apples

c) 18 people
 - 360g plain flour
 - 270g ground almonds
 - 405g sugar
 - 270g butter
 - 18 apples

3) Here are the ingredients for making 1500 ml of parsnip soup:

| 450g parsnips | 300g leeks | 150g Bramley apples | 3 onions | 1 1/2 pints of chicken stock |

Work out the amount of each ingredient for

a) 500 ml of soup
 - 150g parsnips
 - 100g leeks
 - 50g Bramley apples
 - 1 onion
 - 1 pint of chicken stock

b) 1000 ml of soup
 - 300g parsnips
 - 200g leeks
 - 100g Bramley apples
 - 2 onions
 - 5 onions

c) 2500 ml of soup
 - 750g parsnips
 - 500g leeks
 - 250g Bramley apples
 - 1 pint of chicken stock
 - 2 1/2 pints of chicken stock
1) Find the value of the following:
(write down all the figures on your calculator display)

a) \((0.3 + 2.8)^2\)
\[9.61\]

b) \(2.7^2 + 3.9^2\)
\[22.5\]

c) \(4.5^2 - \sqrt{53}\)
\[12.96\]

\[9011\]

\[18.24\]

\[8759\]

d) \(6 \times \sqrt{(37 ÷ 4)}\)

2) Find the value of the following:
(write your answers correct to 1 decimal place)

a) \(.6^{1.1} + 11.2\)
\[186.8\]

\[186.816\]

b) \(87.4 ÷ (\sqrt{39} + 3)\)
\[9.5\]

\[9.45\]

\[3.97\]

\[3.976\]

c) \(\sqrt[3]{3412}\)
\[3.2\]

\[3.15\]

\[3.159\]

\[3.1591\]

d) \(15^2 - 12^2\)
\[33.8\]

\[33.83\]

\[33.838\]

\[33.8382\]

\[33.83823\]

\[544\]

3) Work out
\[\sqrt{16.75 + 1.53^2}\]

a) Write down all the figures on your calculator display. \[6.433576386\]

b) Write your answer to part (a) correct to 1 decimal place. \[6.4\]

4) Work out
\[\sqrt{(2.4 \times 1.9)^2 \times 2.03}\]
\[42.211008\]

Write down all the figures on your calculator display.

5) Use your calculator to work out the value of
\[\frac{7.24 \times 4.71}{5.63 + 11.89}\]

a) Write down all the figures on your calculator display. \[1.973253425\]

b) Write your answer to part (a) to an appropriate degree of accuracy. \[1.97\text{ or } 2.0\]
1) Lance goes on holiday to France.
The exchange rate is £1 = 1.40 Euros.
He changes £350 into Euros.
a) How many Euros should he get? €490
 \[350 \times 1.40 = 490\]
In France, Lance buys a digital camera for 126 Euros.
b) Work out the cost of the camera in pounds. £90
 \[126 \div 1.40 = 90\]

2) Whilst on holiday in Spain, Gemma bought a pair of sunglasses for 77 Euros.
In England, an identical pair of sunglasses costs £59.99.
The exchange rate is £1 = 1.40 Euros.
In which country were the glasses the cheapest, and by how much?
Show all your working. Spain, by £4.99
 \[77 \div 1.40 = 55\]
 \[59.99 - 55.00 = 4.99\]

3) Luke buys a pair of trainers in Switzerland.
He can pay either 86 Swiss Francs or 56 Euros.
The exchange rates are:
£1 = 2.10 Swiss Francs
£1 = 1.40 Euros
Which currency should he choose to get the best price, and how much would he save?
Give your answer in pounds (£). Euros, saving £0.95
 \[86 \div 2.10 = 40.95\]
 \[56 \div 1.40 = 40\]

4) The total cost of 5 kg of potatoes and 2 kg of carrots is £4.88.
3 kg of potatoes cost £1.98.
Work out the cost of 1 kg of carrots. £0.79
 \[1.98 \div 3 = 0.66\]
 \[5 \times 0.66 = 3.30\]
 \[4.88 - 3.30 = 1.58\]
 \[1.58 \div 2 = 0.79\]

5) The cost of 4 kg of bananas is £5.80.
The total cost of 3 kg of bananas and 1.5 kg of pears is £5.61.
Work out the cost of 1 kg of pears. £0.84
 \[5.80 \div 4 = 1.45\]
 \[3 \times 1.45 = 4.35\]
 \[5.61 - 4.35 = 1.26\]
 \[1.26 \div 1.5 = 0.84\]
1. Write down the first 5 terms and the 10th term of the following sequences:

 eg. 2n + 1 3, 5, 7, 9, 11...21

 a) 2n + 2 4, 6, 8, 10, 12, ...22
 b) 3n + 1 4, 7, 10, 13, 16, ...31
 c) n + 3 4, 5, 6, 7, 8, ...13
 d) 7n 7, 14, 21, 28, 35, ...70
 e) 3n – 1 2, 5, 8, 11, 14, ...29
 f) 7n – 3 4, 11, 18, 25, 32, ...67

2. Find the \(n^{th}\) term of the following sequences:

 \[\begin{align*}
 \text{a) } 5, 10, 15, 20... & \quad 5n \\
 \text{b) } 5, 8, 11, 14... & \quad 3n + 2 \\
 \text{c) } 1, 8, 15, 22... & \quad 7n - 6 \\
 \text{d) } 22, 18, 14, 10... & \quad -4n + 26 \\
 \text{e) } -3, 3, 9, 15... & \quad 6n - 9 \\
 \text{f) } 4, -1, -6, -11... & \quad -5n + 9
 \end{align*} \]

3. Here are some patterns made from sticks.

 a) Draw pattern 4 in the space, below..

 b) How many sticks are used in

 (i) pattern 10 \(51\) sticks
 (ii) pattern 20 \(101\) sticks
 (iii) pattern 50 \(251\) sticks

 c) Find an expression, in terms of \(n\), for the number of sticks in pattern number \(n\). \(5n + 1\)

 d) Which pattern number can be made using 301 sticks? Pattern 60
1) Work out the value of $5x$ when
 a) $x = 2$ $\Rightarrow 5 \times 2 = 10$
 b) $x = 6$ $\Rightarrow 5 \times 6 = 30$
 c) $x = 10$ $\Rightarrow 5 \times 10 = 50$

2) Work out the value of $3x$ when
 a) $x = -2$ $\Rightarrow 3 \times (-2) = -6$
 b) $x = 10$ $\Rightarrow 3 \times 10 = 30$
 c) $x = -12$ $\Rightarrow 3 \times (-12) = -36$

3) Work out the value of x^2 when
 a) $x = 3$ $\Rightarrow 3 \times 3 = 9$
 b) $x = -4$ $\Rightarrow (-4) \times (-4) = 16$
 c) $x = -10$ $\Rightarrow (-10) \times (-10) = 100$

4) Work out the value of $2x^2$ when
 a) $x = 5$ $\Rightarrow 2 \times 5^2 = 50$
 b) $x = -4$ $\Rightarrow 2 \times (-4)^2 = 32$
 c) $x = 10$ $\Rightarrow 2 \times 10^2 = 200$

5) Work out the value of $3x + 5$ when
 a) $x = 2$ $\Rightarrow 3 \times 2 + 5 = 11$
 b) $x = 6$ $\Rightarrow 3 \times 6 + 5 = 23$
 c) $x = -1$ $\Rightarrow 3 \times (-1) + 5 = 2$

6) Work out the value of $4 + 2x$ when
 a) $x = 7$ $\Rightarrow 4 + 2 \times 7 = 18$
 b) $x = -1$ $\Rightarrow 4 + 2 \times (-1) = 2$
 c) $x = -3$ $\Rightarrow 4 + 2 \times (-3) = -2$

7) Work out the value of $3x + 2y$ when
 a) $x = 1$ and $y = 2$ $\Rightarrow 3 \times 1 + 2 \times 2 = 7$
 b) $x = 4$ and $y = 3$ $\Rightarrow 3 \times 4 + 2 \times 3 = 18$
 c) $x = 5$ and $y = -4$ $\Rightarrow 3 \times 5 + 2 \times (-4) = 7$

8) Work out the value of $6x - 3y$ when
 a) $x = 2$ and $y = 1$ $\Rightarrow 6 \times 2 - 3 \times 1 = 9$
 b) $x = 1$ and $y = -2$ $\Rightarrow 6 \times 1 - 3 \times (-2) = 12$
 c) $x = -3$ and $y = 4$ $\Rightarrow 6 \times (-3) - 3 \times 4 = -30$

9) Work out the value of $3x^2 + 4y$ when
 a) $x = 1$ and $y = 5$ $\Rightarrow 3 \times 1^2 + 4 \times 5 = 23$
 b) $x = -2$ and $y = 2$ $\Rightarrow 3 \times (-2)^2 + 4 \times 2 = 20$
 c) $x = 3$ and $y = -2$ $\Rightarrow 3 \times 3^2 + 4 \times (-2) = 19$

10) Using the formula $P = H \times R$, where P is the total pay, H is the number of hours worked, and R is the hourly rate of pay.
 Work out the total pay (P) of the following people:
 a) Betty worked 10 hours at £7 per hour $\Rightarrow P = 10 \times 7 = £70$
 b) John worked 15 hours and is paid £9 per hour $\Rightarrow P = 15 \times 9 = £135$
 c) Mike worked for 90 minutes at £16 an hour. $\Rightarrow P = 1.5 \times 16 = £24$

11) The equation of a straight line is given as $y = 3x + 2$
 a) Work out the value of y when
 (i) $x = 0$ $\Rightarrow y = 3 \times 0 + 2 = 2$
 (ii) $x = 1$ $\Rightarrow y = 3 \times 1 + 2 = 5$
 (iii) $x = 2$ $\Rightarrow y = 3 \times 2 + 2 = 8$
 b) What is the value of x when $y = 17$? $\Rightarrow x = 5$
 $17 = 3x + 2$
 $17 - 2 = 3x$
 $\frac{15}{3} = x$
1) Line PQ is parallel to line RS
 If angle PQR is equal to 36°
 a) What is the size of angle QRS? 36°
 b) Give a reason for your answer. Alternate angles

2) Line DCE is parallel to line AB
 a) Find the size of angle ABC 33°
 b) Find the size of angle DCA 68°
 c) Calculate the size of angle ACB 79°

3) a) Find the size of angle DBF 54°
 b) Find the size of angle HGC 136°
1) Work out the size of the angles marked with letters.

 \[
 \begin{align*}
 a &= 80^\circ \\
 b &= 40^\circ \\
 c &= 140^\circ \\
 d &= 38^\circ \\
 e &= 118^\circ \\
 f &= 47^\circ
 \end{align*}
 \]

2) Work out the size of the angles marked with letters.

 \[
 \begin{align*}
 a &= 70^\circ \\
 b &= 40^\circ \\
 c &= 66^\circ \\
 d &= 60^\circ \\
 e &= 60^\circ \\
 f &= 55^\circ \\
 g &= 63^\circ \\
 h &= 45^\circ \\
 i &= 45^\circ \\
 j &= 30^\circ
 \end{align*}
 \]

3) Work out the size of the angles marked with letters.

 \[
 \begin{align*}
 a &= 40^\circ \\
 b &= 75^\circ \\
 c &= 50^\circ \\
 d &= 60^\circ \\
 e &= 110^\circ \\
 f &= 65^\circ \\
 g &= 120^\circ
 \end{align*}
 \]
1) \(ABC\) is a triangle.
 a) Find the size of angle \(A\).
 \[180 - 60 - 60\]
 \(\text{Angle } A \text{ is } 60^\circ\)
 b) Triangle \(ABC\) is equilateral.
 Explain why.
 \(\text{Triangle } ABC \text{ is equilateral because all three angles are } 60^\circ.\)

2) \(BCD\) is a triangle.
 \(ABC\) is a straight line.
 Angle \(CBD = 70^\circ\).
 \(BD = CD\).
 a) (i) Work out the value of \(x\).
 \[x = 110^\circ\]
 \[180 - 70\]
 (ii) Give a reason for your answer.
 \(\text{Angles on a straight line add up to } 180^\circ.\)
 b) (i) Work out the value of \(y\).
 \[y = 40^\circ\]
 \[180 - 70 - 70\]
 (ii) Give reasons for your answer.
 \(\text{Base angles of an isosceles triangle are equal.}\)
 \(\text{180° in a triangle.}\)

3) The diagram shows a 5-sided shape.
 All the sides of the shape are equal in length.
 a) (i) Find the value of \(x\).
 \[x = 60^\circ\]
 (ii) Give a reason for your answer.
 \(\text{The triangle in the diagram is equilateral.}\)
 b) (i) Work out the value of \(y\).
 \[y = 150^\circ\]
 (ii) Explain your answer.
 \(\text{Angle } y \text{ is made up of the angle in the square and the angle in the equilateral triangle. This is } 90^\circ + 60^\circ = 150^\circ.\)
Angles of Regular Polygons

1) a) Work out the size of an **exterior** angle of a regular hexagon. \[60^\circ \quad 360 \div 6 \]
b) Work out the size of an **interior** angle of a regular hexagon. \[120^\circ \quad 180 - 60 \]

2) a) Name the regular polygon, above. **Decagon**
b) Work out the size of an **exterior** angle and of an **interior** angle for this polygon.
 \[
 \begin{align*}
 \text{Exterior angle} & = 36^\circ \\
 \text{Interior angle} & = 144^\circ \\
 & 360 \div 10 \\
 & 180 - 36
 \end{align*}
 \]

3) The size of each **exterior** angle of a regular polygon is 90°.
 Work out the number of sides of the regular polygon. **4 sides** \[360 \div ? = 90 \]

4) The size of each **exterior** angle of a regular polygon is 40°.
 Work out the number of sides of the regular polygon. **9 sides** \[360 \div ? = 40 \]

5) The size of each **interior** angle of a regular polygon is 120°.
 Work out the number of sides of the regular polygon. **6 sides** \[\text{Interior angle} = 120, \quad \text{exterior angle} = 60, \quad 360 \div ? = 60 \]

6) The size of each **interior** angle of a regular polygon is 150°.
 Work out the number of sides of the regular polygon. **12 sides** \[\text{Interior angle} = 150, \quad \text{exterior angle} = 30, \quad 360 \div ? = 30 \]
1) Find the areas of the following shapes.
Take \(\pi \) to be 3.14

\[\text{a)} \quad 3.14 \times 3^2 = 28.26 \text{ cm}^2 \]

\[\text{b)} \quad 3.14 \times 5^2 = 78.5 \text{ m}^2 \]

\[\text{c)} \quad 3.14 \times 4^2 = 50.24 \text{ cm}^2 \]

2) Work out the areas of the following shapes.

\[\text{a)} \quad 3.14 \times 6^2 = 113.04 \]

\[\text{b)} \quad 3.14 \times 10^2 = 314 \]

\[113.04 \div 2 = 56.52 \text{ mm}^2 \]

\[314 \div 4 = 78.5 \text{ cm}^2 \]

3) The diagram shows a circular garden comprising a rectangular pond enclosed by grass.
The circular garden has a diameter of 10 m.
The rectangular pond measures 8 m by 6 m.

Work out the area of the garden covered in grass.
Take \(\pi \) to be 3.14 and give your answer to the nearest \(\text{m}^2 \).

\[\text{Circular garden area: } 3.14 \times 5^2 = 78.5 \]

\[\text{Rectangular pond area: } 8 \times 6 = 48 \]

\[78.5 - 48 = 30.5 \text{ m}^2 \]

4) The radius of the top of a circular table is 60 cm.
The table also has a circular base with diameter 30 cm.

\[\text{a)} \quad 3.14 \times 60^2 = 11304 \text{ cm}^2 \]

\[\text{b)} \quad 3.14 \times 15^2 = 706.5 \text{ cm}^2 \]

5) The diagram shows a shape, made from a semi-circle and a rectangle.
The diameter of the semi-circle is 13 cm.
The length of the rectangle is 17 cm.

Calculate the area of the shape.
Give your answer correct to 3 significant figures. \(287 \text{ cm}^2 \)

\[221 + 66.3325 = 287.3325 \text{ cm}^2 \]
1) Find the circumference of the following shapes.
 Take \(\pi \) to be 3.14.
 \[
 \begin{align*}
 a) & \quad C = 2 \times 3.14 \times 3 = 18.84 \text{ cm} \\
 b) & \quad C = 2 \times 3.14 \times 5 = 31.4 \text{ m} \\
 c) & \quad C = 2 \times 3.14 \times 4 = 25.12 \text{ cm}
 \end{align*}
 \]

2) Work out the perimeter of the following shapes, taking \(\pi \) to be 3.14.
 \[
 \begin{align*}
 a) & \quad P = 2 \times 3.14 \times 12 = 30.84 \text{ mm} \\
 b) & \quad P = 2 \times 3.14 \times 10 = 62.8 \text{ cm}
 \end{align*}
 \]

3) The radius of the top of a circular table is 60 cm. The table also has a circular base with diameter 30 cm.
 a) Work out the circumference of the top of the table.
 Let \(\pi \) be 3.14 \(C = 376.8 \text{ cm} \)
 b) Work out the circumference of the base of the table.
 Let \(\pi \) be 3.14 \(C = 94.2 \text{ cm} \)

4) The diameter of a wheel on Kyle’s bicycle is 0.75 m.
 a) Calculate the circumference of the wheel. \(C = 2 \times 3.14 \times 0.375 = 2.36 \text{ m} \)
 Kyle cycles 2000 metres.
 b) Using your answer in (a), calculate the number of complete turns the wheel makes. \(\text{TURNS} = 2000 \div 2.36 \quad 847 \text{ complete turns} \)

5) The diagram shows a shape, made from a semi-circle and a rectangle.
 The diameter of the semi-circle is 12 cm. The length of the rectangle is 15 cm.
 Calculate the perimeter of the shape.
 Give your answer correct to 3 significant figures. \(P = 60.8 \text{ cm} \)
1) Find the area of each shape.

 a) \[\text{Area} = 52 \text{ cm}^2 \]
 \[\begin{array}{c}
 13 \text{ cm} \\
 4 \text{ cm} \\
 10 \text{ cm} \\
 6 \text{ cm} \\
 5 \text{ cm}
 \end{array} \]
 \[\text{Area} = 30 \text{ cm}^2 \]

 b) \[\text{Area} = 375 \text{ cm}^2 \]
 \[\begin{array}{c}
 15 \text{ cm} \\
 8 \text{ cm} \\
 25 \text{ cm} \\
 15 \text{ cm}
 \end{array} \]
 \[\text{Area} = 150 \text{ cm}^2 \]

 c) \[\text{Area} = 72 \text{ m}^2 \]
 \[\begin{array}{c}
 6 \text{ m} \\
 9 \text{ m} \\
 6 \text{ m} \\
 9 \text{ m}
 \end{array} \]
 \[\text{Area} = 54 \text{ m}^2 \]

 d) \[\text{Area} = 24 \text{ mm}^2 \]
 \[\begin{array}{c}
 4 \text{ mm} \\
 6 \text{ mm} \\
 3 \text{ mm} \\
 2 \text{ mm}
 \end{array} \]
 \[\text{Area} = 18 \text{ mm}^2 \]

2) Find the shaded area of each shape.

 a) \[\text{Area} = 54 \text{ cm}^2 \]
 \[(60 - 6) \]
 \[\begin{array}{c}
 3 \text{ cm} \\
 2 \text{ cm} \\
 10 \text{ cm} \\
 6 \text{ cm}
 \end{array} \]
 \[\text{Area} = 54 \text{ cm}^2 \]

 b) \[\text{Area} = 56 \text{ cm}^2 \]
 \[(84 - 28) \]
 \[\begin{array}{c}
 7 \text{ cm} \\
 4 \text{ cm} \\
 12 \text{ cm} \\
 7 \text{ cm}
 \end{array} \]
 \[\text{Area} = 52 \text{ cm}^2 \]

 c) \[\text{Area} = 48 \text{ mm}^2 \]
 \[(60 - 4 - 8) \]
 \[\begin{array}{c}
 2 \text{ mm} \\
 2 \text{ mm} \\
 10 \text{ mm}
 \end{array} \]
 \[\text{Area} = 24 \text{ mm}^2 \]

 d) \[\text{Area} = 66 \text{ m}^2 \]
 \[(132 - 66) \]
 \[\begin{array}{c}
 12 \text{ m} \\
 11 \text{ m} \\
 12 \text{ m}
 \end{array} \]
1) a) Rotate triangle T 90° anti-clockwise about the point (0, 0).
 Label your new triangle U

 b) Rotate triangle T 180° about the point (2, 0).
 Label your new triangle V

2) Describe fully the single transformation which maps triangle T to triangle U.
 Rotation, 90° clockwise, centre of rotation (-1, -1)
1) a) Reflect triangle T in the x axis. Label your new triangle U.

b) Reflect triangle T in the line with equation $y = -x$. Label your new triangle V.

2) a) Describe fully the single transformation which maps triangle T to triangle U.

 Reflection in the x axis.

b) Describe fully the single transformation which maps triangle T to triangle V.

 Reflection in the $y = x$ line.
1) a) Enlarge triangle T by scale factor 2 using point $(-5, 2)$ as the centre of enlargement. Label your new triangle U.

b) Enlarge triangle V by scale factor a half using the point $(-2, -3)$ as the centre of enlargement. Label your new triangle W.

2) Describe fully the single transformation which maps triangle S to triangle T

*Enlargement, scale factor 3, centre of enlargement $(0, 3)$.

Page 71
1) a) Translate triangle T by vector $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$ and label it U

b) Translate triangle T by vector $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ and label it V

2) a) Describe fully the single transformation which maps triangle A to triangle B.

b) Describe fully the single transformation which maps triangle A to triangle C.
1) Find the midpoint of A and B where A has coordinates (-2, 5) and B has coordinates (4, -1). Midpoint at (1, 2)

2) Find the midpoint of A and B where A has coordinates (2, 0) and B has coordinates (8, 6). Midpoint at (5, 3)

3) Find the midpoint of A and B where A has coordinates (-4, -2) and B has coordinates (2, 4). Midpoint at (-1, 1)

4) Find the midpoint of A and B where A has coordinates (-3, -2) and B has coordinates (7, 5). Midpoint at (2, 1.5)

5) Find the midpoint of A and B where A has coordinates (2, -5) and B has coordinates (7, 4). Midpoint at (4.5, -0.5)

6) Find the midpoint of A and B where A has coordinates (-7, -4) and B has coordinates (-2, -1). Midpoint at (-4.5, -2.5)

7) The midpoint of A and B is at (1, 3). The coordinates of A are (-2, 4). Work out the coordinates of B. (4, 2)

8) The midpoint of A and B is at (3.5, 2.5). The coordinates of A are (2, 5). Work out the coordinates of B. (5, 0)
Measuring and Drawing Angles

1) Measure the following angles:

- Angle ABC = 60°
- Angle PQR = 127°
- Angle XYZ = 275°

2) Draw the following angles:

a) Angle ABC = 60°

b) Angle PQR = 127°

c) Angle XYZ = 275°
1) The diagram shows the sketch of triangle ABC.

![Diagram of triangle ABC]

a) Make an accurate drawing of triangle ABC.

b) Measure the size of angle A on your diagram. \(\text{Angle } A = 59° \)

2) Use ruler and compasses to **construct** an equilateral triangle with sides of length 6 centimetres.

![Equilateral triangle]

3) The diagram shows the sketch of triangle PQR.

![Diagram of triangle PQR]

\(\text{Angle } P = 43° \)
The diagram shows a prism drawn on an isometric grid.

a) On the grid below, draw the front elevation of the prism from the direction marked by the arrow.

b) On the grid below draw a plan of the prism.
1) Sketch nets of these solids.

a) [Nets diagram]

b) [Nets diagram]

2) [Nets diagrams]

3) The two nets, below, are folded to make cubes. Two other vertices will meet at the dot, A. Mark them with As. One other vertex will meet at the dot B. Mark it with B.

a) [Net diagram with vertex marked A]

b) [Net diagram with vertex marked B]
1) Draw all the lines of symmetry on the triangle and the rectangle.

2) What is the order of rotational symmetry of the two shapes below.

Rotational symmetry order 5 Rotational symmetry order 2

3) The diagram below shows part of a shape.

The shape has rotational symmetry of order 4 about point P.
Complete the shape.

4) On each of the shapes below, draw one plane of symmetry.

There are other answers for these two questions.
1) Claire wants to find how much time pupils spend on their homework. She hands out a questionnaire with the question

How much time do you spend on your homework?

- *A lot* []
- *Not much* []

a) Write down two things that are wrong with this question

No mention of time. Does it mean ‘per night’, ‘per week’, etc. __________________________

‘A lot’ and ‘Not much’ are not specific enough. They mean different things to different people. __________________________

b) Design a suitable question she could use.

You should include response boxes.

How much time do you spend on homework per night?

- *Less than 15 mins* []
- *Between 15 and 30 mins* []
- *More than 30 mins* []

2) Tony wants to know which type of programme pupils in his class like watching on TV. Design a suitable data collection sheet he could use to gather the information.

<table>
<thead>
<tr>
<th>Type of programme</th>
<th>Tally</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soap opera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reality TV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Films</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Situation comedy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) Emma asked 20 people what was their favourite pet. Here are their answers.

cat cat hamster cat
mouse hamster cat dog
dog dog snake hamster
cat cat hamster dog
cat hamster snake cat

Design and complete a suitable data collection sheet that Emma could have used to collect and show this information.

<table>
<thead>
<tr>
<th>Favourite pet</th>
<th>Tally</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat</td>
<td>HHH</td>
<td>8</td>
</tr>
<tr>
<td>Hamster</td>
<td>HH</td>
<td>5</td>
</tr>
<tr>
<td>Mouse</td>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>Dog</td>
<td>HHHH</td>
<td>4</td>
</tr>
<tr>
<td>Snake</td>
<td>HH</td>
<td>2</td>
</tr>
</tbody>
</table>
1. Billy has been carrying out a survey.
He asked 100 people the type of water they like to drink (still, sparkling or both).
Here are part of his results:

<table>
<thead>
<tr>
<th></th>
<th>Still</th>
<th>Sparkling</th>
<th>Both</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>26</td>
<td>21</td>
<td>6</td>
<td>53</td>
</tr>
<tr>
<td>Female</td>
<td>17</td>
<td>20</td>
<td>10</td>
<td>47</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>41</td>
<td>16</td>
<td>100</td>
</tr>
</tbody>
</table>

a) Complete the two-way table.

b) How many males were in the survey? 53

c) How many females drink only still water? 17

d) How many people drink only sparkling water? 41

2. 90 students each study one of three languages.
The two-way table shows some information about these students.

<table>
<thead>
<tr>
<th></th>
<th>French</th>
<th>German</th>
<th>Spanish</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>6</td>
<td>11</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td>Male</td>
<td>14</td>
<td>7</td>
<td>29</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>18</td>
<td>52</td>
<td>90</td>
</tr>
</tbody>
</table>

50 of the 90 students are male.
29 of the 50 male students study Spanish.

a) Complete the two-way table.

b) How many females study French? 6

c) How many people study Spanish? 52
1) Patrick asked some of his colleagues which was their favourite holiday destination. The table shows the results.

<table>
<thead>
<tr>
<th>City</th>
<th>Frequency</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alicante</td>
<td>8 × 9</td>
<td>72°</td>
</tr>
<tr>
<td>Paris</td>
<td>7 × 9</td>
<td>63°</td>
</tr>
<tr>
<td>Ibiza</td>
<td>15 × 9</td>
<td>135°</td>
</tr>
<tr>
<td>St Lucia</td>
<td>1 × 9</td>
<td>9°</td>
</tr>
<tr>
<td>Biarritz</td>
<td>9 × 9</td>
<td>81°</td>
</tr>
</tbody>
</table>

Draw a pie chart to illustrate the information.

\[
\frac{360}{40} = 9
\]

2) Brian asked 60 people which region their favourite rugby team came from. The table shows the results.

<table>
<thead>
<tr>
<th>Region</th>
<th>Frequency</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern England</td>
<td>9 × 6</td>
<td>54°</td>
</tr>
<tr>
<td>London</td>
<td>23 × 6</td>
<td>138°</td>
</tr>
<tr>
<td>Midlands</td>
<td>16 × 6</td>
<td>96°</td>
</tr>
<tr>
<td>Northern England</td>
<td>12 × 6</td>
<td>72°</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>360°</td>
</tr>
</tbody>
</table>

Draw a pie chart to illustrate the information.

\[
\frac{360}{60} = 6
\]

3) Sophie represents her monthly expenses using a pie chart. Numbers from her table have been rubbed out by mistake. Use the pie chart to complete the table.

<table>
<thead>
<tr>
<th></th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clothes</td>
<td>70°</td>
</tr>
<tr>
<td>Eating out</td>
<td>146°</td>
</tr>
<tr>
<td>Make up</td>
<td>34°</td>
</tr>
<tr>
<td>Magazines</td>
<td>40°</td>
</tr>
<tr>
<td>Books</td>
<td>70°</td>
</tr>
<tr>
<td>Total</td>
<td>360°</td>
</tr>
</tbody>
</table>
1) The scatter graph shows some information about the marks of six students. It shows each student’s marks in Maths and Science.

The table below shows the marks for four more students.

<table>
<thead>
<tr>
<th>Maths</th>
<th>22</th>
<th>8</th>
<th>17</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>30</td>
<td>12</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

a) On the scatter graph, plot the information from the table.
b) Draw a line of best fit.
c) Describe the correlation between the marks in Maths and the marks in Science.

There is a positive correlation

Another student has a mark of 18 in Science.
d) Use the line of best fit to estimate the mark in Maths of this student.

My answer is 14. Yours will depend on your line of best fit.

2) The table below shows the average daily number of hours sleep of 10 children.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>4</th>
<th>2</th>
<th>5</th>
<th>1</th>
<th>9</th>
<th>6</th>
<th>8</th>
<th>7</th>
<th>10</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hours sleep</td>
<td>14</td>
<td>13</td>
<td>12.5</td>
<td>15</td>
<td>10</td>
<td>12.5</td>
<td>10.8</td>
<td>12</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

The first five results have been plotted on the scatter diagram.

a) Plot the next five points.
b) Draw a line of best fit.
c) Describe the relationship between the age of the children and their number of hours sleep per day.

A negative correlation.
d) Use your scatter graph to estimate the number of hours sleep for a 3 year old child.

My answer is 13.6. Yours will depend on your line of best fit.
A class of pupils is asked to solve a puzzle.
The frequency table below shows the times taken by the pupils to solve the puzzle.

<table>
<thead>
<tr>
<th>Time (t) in min</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 < t \leq 5$</td>
<td>3</td>
</tr>
<tr>
<td>$5 < t \leq 10$</td>
<td>4</td>
</tr>
<tr>
<td>$10 < t \leq 15$</td>
<td>5</td>
</tr>
<tr>
<td>$15 < t \leq 20$</td>
<td>7</td>
</tr>
<tr>
<td>$20 < t \leq 25$</td>
<td>5</td>
</tr>
</tbody>
</table>

a) Draw a frequency diagram to show this information.

![Frequency Diagram](image)

b) Draw a frequency polygon to show this information.

![Frequency Polygon](image)
1) 16 students sat a Maths test. Here are their marks:

64 72 39 45 49 67 73 50
73 44 55 77 51 62 64 79

39, 44, 45, 49, 50, 51, 55, 62, 64, 67, 72, 73, 73, 77, 79

Draw a stem and leaf diagram to show this information.

3 | 9
4 | 4 5 9
5 | 0 1 5
6 | 2 4 4 7
7 | 2 3 3 7 9

Key: 3|9 means 39 marks

2) Pat is carrying out a survey on how tall pupils in her class are. Here are their heights in cm:

173 162 170 169 163 173 156
159 161 168 177 182 170 169

156, 159, 161, 162, 163, 168, 169, 169, 170, 170, 173, 173, 177, 182

Draw a stem and leaf diagram to show this information.

15 | 6 9
16 | 1 2 3 8 9 9
17 | 0 0 3 3 7
18 | 2

Key: 15|6 means 156 cm

3) The stem and leaf diagram below, shows information about the times, in minutes, it takes a group of people to eat their breakfast.

0 | 5 7 9
1 | 0 0 5 8 8
2 | 0 2 3 5 7
3 | 2 5

Key: 1|0 represents 10 minutes.

a) How many people are in the group? 15 people

b) How many people spend 15 minutes or more eating their breakfast? 10 people

c) Find the median time that it took to eat breakfast. 18 minutes
1) A 3-sided spinner with numbers 1 to 3 and a 4-sided spinner with numbers 1 to 4 are both spun.
 a) How many possible outcomes are there? \(12\)
 b) List all the possible outcomes. \(1,1 \quad 1,2 \quad 1,3 \quad 1,4 \quad 2,1 \quad 2,2 \quad 2,3 \quad 2,4 \quad 3,1 \quad 3,2 \quad 3,3 \quad 3,4\)

2) Two coins are flipped and a 3-sided spinner with numbers 1 to 3 is spun.
 a) How many possible outcomes are there? \(12\)
 b) List all the possible outcomes. \(H,H,1 \quad H,H,2 \quad H,H,3 \quad H,T,1 \quad H,T,2 \quad H,T,3 \quad T,H,1 \quad T,H,2 \quad T,H,3 \quad T,T,1 \quad T,T,2 \quad T,T,3\)

Working Out Probabilities

1) There are 3 blue counters, 5 red counters and 7 green counters in a bag.
 A counter is taken from the bag at random.
 a) What is the probability that a green counter will be chosen? \(\frac{7}{15}\)
 b) What is the probability that a blue or red counter will be chosen? \(\frac{8}{15}\)

2) In a drawer there are 6 blue pairs of socks, 9 yellow pairs of socks, 4 black pairs of socks and 5 white pairs of socks.
 A pair of socks is taken from the drawer at random.
 a) What is the probability that the pair of socks chosen is white? \(\frac{5}{24}\)
 b) What is the probability that the pair of socks chosen is yellow? \(\frac{9}{24}\)
 c) What is the probability that the pair of socks chosen is blue or black? \(\frac{10}{24}\)

3) In a class there are 12 boys and 15 girls.
 A teacher chooses a student at random from the class.
 Eric says that the probability a boy will be chosen is 0.5 because a student can be either a boy or a girl.
 Jenny says that Eric is wrong.
 Decide who is correct - Eric or Jenny - giving reasons for your answer.
 Jenny is correct. The probability of choosing a boy is \(\frac{12}{27}\)

4) Spinner A has numbers 1 to 4 on it.
 Spinner B has numbers 1 to 3 on it.
 Both spinners are spun and the numbers on each are added together to give a score.
 What is the probability that the score will be
 a) 7? \(\frac{1}{12}\)
 b) 5? \(\frac{3}{12}\)
 c) 3 or 4? \(\frac{5}{12}\)
1) If the probability of passing a driving test is 0.54, what is the probability of failing it?

\[1 - 0.54 = 0.46 \]

2) The probability that a football team will win their next game is \(\frac{2}{11} \). The probability they will lose is \(\frac{3}{11} \). What is the probability the game will be a draw?

\[\frac{6}{11} + \frac{5}{11} = \frac{11}{11} = 1 \]

3) On the school dinner menu there is only ever one of four options. Some of the options are more likely to be on the menu than others. The table shows the options available on any day, together with three of the probabilities.

<table>
<thead>
<tr>
<th>Food</th>
<th>Curry</th>
<th>Sausages</th>
<th>Fish</th>
<th>Casserole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.36</td>
<td>0.41</td>
<td>0.09</td>
<td>1 - 0.36 - 0.41 - 0.09 = 0.14</td>
</tr>
</tbody>
</table>

a) Work out the probability of the dinner option being Fish. 0.14

b) Which option is most likely? Sausages 0.36 + 0.41 = 0.77

c) Work out the probability that it is a Curry or Sausages on any particular day. 0.36 + 0.41 = 0.77

d) Work out the probability that it is not Casserole. 1 - 0.09 = 0.91

4) Julie buys a book every week. Her favourite types are Novel, Drama, Biography and Romance. The table shows the probability that Julie chooses a particular type of book.

<table>
<thead>
<tr>
<th>Type of book</th>
<th>Novel</th>
<th>Drama</th>
<th>Biography</th>
<th>Romance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.24</td>
<td>0.16</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

a) Work out the probability that she will choose a Novel or a Drama. 0.24 + 0.16 = 0.4

b) Work out the probability that she will choose a Biography or a Romance. 1 - 0.4 = 0.6

The probability that she will choose a Biography is the same as the probability she will choose a Romance.

c) Work out the probability that she will choose a Biography. 0.6 ÷ 2 = 0.3
Overview of Percentages

With a calculator

1) Find the following to the nearest penny:

a) 23% of £670 £154.10

b) 12% of £80 £9.60

c) 48% of £64 £30.72

d) 13% of £7.50 £0.98

e) 87% of £44 £38.28

f) 15.7% of £7000 £1099

g) 23.8% of £980 £233.24

h) 34% of £16.34 £5.56

i) 48.6% of £971.26 £472.03

j) 78.24% of £12.82 £10.03

k) 42.15% of £7876.42 £3319.91

l) 0.57% of £60000 £342

2) Find the following:

a) 10% of £700 £70

b) 10% of £400 £40

c) 10% of £350 £35

d) 10% of £530 £53

e) 10% of £68 £6.80

f) 10% of £46 £4.60

g) 10% of £6.50 £0.65

h) 10% of £12.20 £1.22

i) 20% of £600 £120

j) 30% of £900 £270

k) 60% of £800 £480

l) 20% of £650 £130

m) 40% of £320 £128

n) 15% of £300 £45

o) 15% of £360 £54

p) 65% of £12000 £7800

q) 45% of £64 £28.80

r) 85% of £96 £81.60

s) 17.5% of £800 £140

t) 17.5% of £40 £7

u) 17.5% of £8.80 £1.54

3) Change the following to percentages:

a) 6 out of 28 21.4%

b) 18 out of 37 48.6%

c) 42 out of 83 50.6%

d) 24 out of 96 25%

e) 73 out of 403 18.1%

f) 234 out of 659 35.5%

g) 871 out of 903 96.5%

h) 4.7 out of 23 20.4%

i) 6.9 out of 79 8.7%

j) 14.8 out of 23.6 62.7%

k) 65.8 out of 203.7 32.3%

l) 12 out of 2314 0.5%

4) Change the following to percentages:

a) 46 out of 100 46%

b) 18 out of 50 36%

c) 7 out of 25 28%

d) 23 out of 25 92%

e) 9 out of 20 45%

f) 16 out of 20 80%

g) 7 out of 10 70%

h) 9.5 out of 10 95%

i) 10 out of 40 25%

j) 16 out of 40 40%

k) 30 out of 40 75%

l) 12 out of 40 30%

m) 28 out of 80 35%

n) 32 out of 80 40%

o) 60 out of 80 75%

p) 3 out of 5 60%

q) 4 out of 5 80%

r) 15 out of 75 20%

s) 24 out of 75 32%

t) 30 out of 75 40%

5) A shop gives a discount of 20% on a magazine that usually sells for £2.80. Work out the discount in pence. 56p

6) A television costs £595 plus VAT at 17.5%. Work out the cost of the television including VAT. £699.13

7) Peter has 128 trees in his garden. 16 of the trees are pear trees. What percentage of the trees in his garden are pear trees? 12.5%

8) A battery operated car travels for 10m when it is first turned on. Each time it is turned on it travels 90% of the previous distance as the battery starts to run out. How many times does the car travel at least 8 metres? 3

9) Jane scored 27 out of 42 in a Maths test and 39 out of 61 in a Science test. What were her percentages in both subjects to 1 decimal place? **Maths 64.3%** **Sci 63.9%**

10) In class 7A there are 7 girls and 18 boys. What percentage of the class are girls? 28%

11) A shop decides to reduce all the prices by 15%. The original price of a pair of trainers was £70. How much are they after the reduction? **£59.50**

12) VAT at 17.5% is added to the price of a car. Before the VAT is added it cost £18000. How much does it cost with the VAT? **£21150**
Increase/Decrease by a Percentage

1) **Increase:**
 - **a)** 500 by 10%
 - $500 + 50 = 550$
 - **b)** 320 by 10%
 - $320 + 32 = 352$
 - **c)** 80 by 15%
 - $80 + 12 = 92$
 - **d)** 75 by 20%
 - $75 + 15 = 90$

2) **Decrease:**
 - **a)** 400 by 10%
 - $400 - 40 = 360$
 - **b)** 380 by 10%
 - $380 - 38 = 342$
 - **c)** 140 by 15%
 - $140 - 21 = 119$
 - **d)** 35 by 20%
 - $35 - 7 = 28$

3) The price of laptop is increased by 15%.
 - The old price of the laptop was £300.
 - Work out the new price.
 - £300 + £45 = £345

4) The price of a £6800 car is reduced by 10%.
 - What is the new price?
 - £6120

5) **Increase:**
 - **a)** 65 by 12%
 - $65 \times 1.12 = 72.8$
 - **b)** 120 by 23%
 - $120 \times 1.23 = 147.6$
 - **c)** 600 by 17.5%
 - $600 \times 1.175 = 705$
 - **d)** 370 by 17.5%
 - $370 \times 1.175 = 434.75$

6) **Decrease:**
 - **a)** 42 by 15%
 - $42 \times 0.85 = 35.7$
 - **b)** 79 by 12%
 - $79 \times 0.88 = 69.52$
 - **c)** 52 by 8.5%
 - $52 \times 0.915 = 47.58$
 - **d)** 8900 by 18%
 - $8900 \times 0.82 = 7298$

7) The price of a mobile phone is £78.40 plus VAT.
 - VAT is charged at a rate of 17.5%.
 - What is the total price of the mobile phone?
 - £92.12

8) In a sale, normal prices are reduced by 7%.
 - The normal price of a camera is £89.
 - Work out the sale price of the camera.
 - £82.77

9) A car dealer offers a discount of 20% off the normal price of a car, for cash.
 - Peter intends to buy a car which usually costs £6800.
 - He intends to pay by cash.
 - Work out how much he will pay.
 - £5440

10) A month ago, John weighed 97.5 kg.
 - He now weighs 4.5% more.
 - Work out how much John now weighs.
 - 101.9 kg
1. Write the following ratios in their simplest form
 a) 6 : 9 → 2 : 3
b) 10 : 5 → 2 : 1
c) 7 : 21 → 1 : 3
d) 4 : 24 → 1 : 6
e) 12 : 40 → 3 : 10
f) 18 : 27 → 2 : 3
g) 4 : 2 : 8 → 2 : 1 : 4
h) 18 : 63 : 9 → 2 : 7 : 1

2. Complete the missing value in these equivalent ratios
 a) 3 : 5 = 12 : ? → 20
b) 4 : 9 = 27 : ? → 12
c) ? : 7 = 16 : 14 → 8
d) 2 : 3 = 4 : ? → 5

3. Match together cards with equivalent ratios:
 3 : 4 → 10 : 5 → 50 : 100 → 2 : 1 → 5 : 2 → 15 : 20 → 15 : 6 → 1 : 2

4. The ratio of girls to boys in a class is 4 : 5.
 a) What fraction of the class are girls? \(\frac{4}{9}\)
b) What fraction of the class are boys? \(\frac{5}{9}\)

5. A model of a plane is made using a scale of 1 : 5.
 a) If the real length of the plane is 20m, what is the length of the model in metres? 4m
b) If the wings of the model are 100cm long, what is the real length of the wings in metres? 5m

6. Share out £250 in the following ratios:
 a) 1 : 4 → £50 and £200
b) 2 : 3 → £100 and £150
c) 7 : 3 → £175 and £75
d) 9 : 12 : 4 → £90 and £120 and £40

7. Share out £80 between Tom and Jerry in the ratio 3 : 2. **Tom gets £48, Jerry gets £32**
 \(3 + 2 = 5\)
 \(80 \div 5 = 16\)
 \(3 \times 16 = 48\)
 \(2 \times 16 = 32\)

8. A box of chocolates has 3 milk chocolates for every 2 white chocolates. There are 60 chocolates in the box.
 Work out how many white chocolates are in the box. **24 white chocolates**
 \(3 + 2 = 5\)
 \(60 \div 5 = 12\)
 \(2 \times 12 = 24\)

9. In a bracelet, the ratio of silver beads to gold beads is 5 : 2.
 The bracelet has 25 silver beads.
 How many gold beads are in the bracelet? **10 gold beads**
 \(\frac{5}{25} \times 5\)

10. To make mortar you mix 1 shovel of cement with 5 shovels of sand.
 How much sand do you need to make 30 shovels of mortar? **25 shovels of sand**
 \(1 \times 5 = 6\)
 \(30 \div 6 = 5\)
 \(5 \times 5 = 25\)
1) List the first seven prime numbers.
 $$2, 3, 5, 7, 11, 13, 17$$

2) Express the following number as the product of their prime factors:

 a) 30 b) 60 c) 360 d) 220
 $$2 \times 3 \times 5 \quad 2 \times 2 \times 3 \times 5 \quad 2 \times 2 \times 2 \times 3 \times 3 \times 5 \quad 2 \times 2 \times 5 \times 11$$

3) Express the following number as the product of powers of their prime factors:

 a) 24 b) 64 c) 192 d) 175
 $$2^3 \times 3 \quad 2^6 \quad 2^6 \times 3 \quad 5^2 \times 7$$

4) The number 96 can be written as $$2^m \times n$$, where $$m$$ and $$n$$ are prime numbers.
 Find the value of $$m$$ and the value of $$n$$.
 $$m = 5$$
 $$n = 3$$
 $$96 = 2^5 \times 3$$

5) The number 75 can be written as $$5^x \times y$$, where $$x$$ and $$y$$ are prime numbers.
 Find the value of $$x$$ and the value of $$y$$.
 $$x = 2$$
 $$y = 3$$
 $$75 = 3 \times 5^2$$

HCF and LCM

1) Find the Highest Common Factor (HCF) of each of these pairs of numbers.

 a) 16 and 24 8
 b) 21 and 28 7
 c) 60 and 150 30
 d) 96 and 108 12

 $$16 = 2 \times 2 \times 2 \times 2$$
 $$21 = 3 \times 7$$
 $$60 = 2 \times 2 \times 3 \times 5$$
 $$96 = 2 \times 2 \times 2 \times 2 \times 2 \times 3$$

 $$24 = 2 \times 2 \times 2 \times 3$$
 $$28 = 2 \times 2 \times 7$$
 $$150 = 2 \times 3 \times 5 \times 5$$
 $$108 = 2 \times 2 \times 3 \times 3 \times 3$$

2) Find the Least (or Lowest) Common Multiple (LCM) of each of these pairs of numbers.

 a) 16 and 24 48
 b) 21 and 28 84
 c) 60 and 150 300
 d) 96 and 108 864

3) a) Write 42 and 63 as products of their prime factors.
 $$42 = 2 \times 3 \times 7$$
 $$63 = 3 \times 3 \times 7$$

 b) Work out the HCF of 42 and 63.
 21

 c) Work out the LCM of 42 and 63.
 126

4) a) Write 240 and 1500 as products of their prime factors.
 $$240 = 2 \times 2 \times 2 \times 2 \times 3 \times 5$$
 $$1500 = 2 \times 2 \times 3 \times 5 \times 5 \times 5$$

 b) Work out the HCF of 240 and 1500.
 60

 c) Work out the LCM of 240 and 1500.
 6 000
1) Use the information that
\[13 \times 17 = 221 \]
to write down the value of
(i) \(1.3 \times 1.7 \quad 2.21 \)
(ii) \(221 \div 1.7 \quad 130 \)

2) Use the information that
\[253 \times 48 = 12144 \]
to write down the value of
(i) \(2.53 \times 4.8 \quad 12.144 \)
(ii) \(2530 \times 480 \quad 1214400 \)
(iii) \(0.253 \times 4800 \quad 1214.4 \)
(iv) \(12144 \div 25.3 \quad 480 \)
(v) \(12144 \div 0.48 \quad 25300 \)

3) Use the information that
\[27.3 \times 2.8 = 76.44 \]
to write down the value of
(i) \(273 \times 28 \quad 7644 \)
(ii) \(2.73 \times 280 \quad 764.4 \)
(iii) \(0.273 \times 28 \quad 7.644 \)
(iv) \(76.44 \div 28 \quad 2.73 \)
(v) \(7.644 \div 2.73 \quad 2.8 \)

4) Use the information that
\[97.6 \times 370 = 36112 \]
to write down the value of
(i) \(9.76 \times 37 \quad 361.12 \)
(ii) \(9760 \times 3700 \quad 36112000 \)
(iii) \(0.0976 \times 3.7 \quad 0.36112 \)
(iv) \(36.112 \div 3.7 \quad 9.76 \)
(v) \(361120 \div 9.76 \quad 37000 \)
1) Write each recurring decimal as an exact fraction, in its lowest terms.

a) \(0.\overline{5} = \frac{5}{9}\)

b) \(0.\overline{7} = \frac{7}{9}\)

c) \(0.\overline{4} = \frac{4}{9}\)

d) \(0.\overline{24} = \frac{24}{99} = \frac{8}{33}\)

e) \(0.\overline{75} = \frac{75}{99} = \frac{25}{33}\)

f) \(0.\overline{82} = \frac{82}{99}\)

g) \(0.6\overline{17} = \frac{617}{999}\)

h) \(0.2\overline{16} = \frac{216}{999} = \frac{8}{37}\)

i) \(0.7\overline{14} = \frac{714}{999} = \frac{238}{333}\)

j) \(0.3\overline{24} = \frac{324}{999} = \frac{12}{37}\)

k) \(0.7\overline{2357} = \frac{72357}{99999} = \frac{89}{123}\)

l) \(0.6\overline{5214} = \frac{65214}{99999} = \frac{7246}{11111}\)
Clip 99 Four Rules of Negatives

Work out the following without a calculator

a) 6 − 9 = \(-3\)

b) 4 × -3 = \(-12\)

c) \(-10 ÷ -5 = 2\)

d) \(-7 − -6 = -1\)

e) 25 ÷ -5 = \(-5\)

f) \(-2 + -6 = -8\)

g) 7 − -3 = 10

h) 6 × -9 = \(-54\)

i) 5 + -11 = \(-6\)

j) \(-8 × 4 = -32\)

k) 12 + -3 = 9

l) 5 + 9 − 3 = 11

m) -3 × -2 × 4 = 24

n) -6 − -5 − 8 = -9

o) -5 × -6 × -2 = -60

p) 8 ÷ -4 × -5 = 10

q) 2 + -8 + -7 = -13

r) 13 + -13 = 0

s) 16 ÷ -2 × 4 = -32

t) 11 − 3 + -9 − -5 = 4

u) -7 × -2 × -3 = -42

v) -1 + -3 + 2 = -2

Clip 100 Division by Two-Digit Decimals

1) Work out the following without a calculator

a) 350 ÷ 0.2 1750

b) 2 ÷ 0.25 8

c) 0.45 ÷ 0.9 0.5

d) 2.42 ÷ 0.4 6.05

e) 30.66 ÷ 2.1 14.6

f) 5.886 ÷ 0.9 6.54

g) 38.08 ÷ 1.7 22.4

h) 98.8 ÷ 0.08 1235

2) Sam is filling a jug that can hold 1.575 litres, using a small glass. The small glass holds 0.035 litres. How many of the small glasses will he need? 45

\[1575 \div 35 = 45 \]
1. Work out an estimate for the value of

 a) \[
 \frac{547}{4.8 \times 9.7} \quad 10 \quad \frac{500}{5 \times 10} \quad \frac{500}{50}
 \]

 b) \[
 \frac{69 \times 398}{207} \quad 140 \quad \frac{70 \times 400}{200} \quad \frac{28000}{200}
 \]

 c) \[
 \frac{7.5 \times 2.79}{2.71 + 3.19} \quad 4 \quad \frac{8 \times 3}{3 + 3} \quad \frac{24}{6}
 \]

 d) \[
 \frac{409 \times 5.814}{0.19} \quad 12000 \quad \frac{400 \times 6}{0.2} \quad \frac{2400}{0.2}
 \]

2. a) Work out an estimate for

 \[
 \frac{19.6 \times 31.7}{7.9 \times 5.2} \quad 15 \quad \frac{20 \times 30}{8 \times 5} \quad \frac{600}{40}
 \]

 b) Use your answer to part (a) to find an estimate for

 \[
 \frac{196 \times 317}{79 \times 52} \quad 15
 \]

3. a) Work out an estimate for

 \[
 \frac{6.13 \times 9.68}{3.79 \times 2.56} \quad 5 \quad \frac{6 \times 10}{4 \times 3} \quad \frac{60}{12}
 \]

 b) Use your answer to part (a) to find an estimate for

 \[
 \frac{613 \times 968}{379 \times 256} \quad 5
 \]
Algebraic Simplification

1) Simplify
 a) \(x + x \) \(2x \)
 b) \(x \times x \) \(x^2 \)
 c) \(3x + 2x \) \(5x \)
 d) \(3x \times 2x \) \(6x^2 \)
 e) \(2x^2y^3 + 4x^3y^3 \) \(6x^2y^3 \)
 f) \(2x^2y \times 3xy^3 \) \(6x^3y^4 \)

2) Simplify
 a) \(x + y + x + y \) \(2x + 2y \)
 b) \(3x + 2y + x + 5y \) \(4x + 7y \)
 c) \(6y + 2x - 2y - 3x \) \(4y - x \)
 d) \(5p - 3q + p + 2q \) \(6p - q \)

3) Expand and simplify
 a) \(2(x + y) + 3(x + y) \) \(5x + 5y \)
 b) \(3(2x + y) + 2(5x + 3y) \) \(16x + 9y \)
 c) \(5(x + y) + 3(2x - y) \) \(11x + 2y \)
 d) \(3(2c + d) - 2(c + d) \) \(4c + d \)
 e) \(4(2p + q) - 3(2p - q) \) \(2p + 7q \)
 f) \(3(4x - 2y) + 2(x + 2y) \) \(14x - 2y \)
 g) \(6(x - 3y) - 2(2x - 5y) \) \(2x - 8y \)

5) a) Simplify \(pq + 2pq \) \(3pq \)
 b) Simplify \(5x + 3y - x - 4y \) \(4x - y \)

6) a) Simplify \(6a + 5b - 3b + a \) \(7a + 2b \)
 b) Simplify \(x^4 + x^4 \) \(2x^4 \)

7) a) Simplify \(x + y + x + y + x \) \(3x + 2y \)
 b) Simplify \(t^2 + t^2 + t^2 \) \(3t^2 \)

8) a) Simplify \(a^3 \times a^3 \) \(a^6 \)
 b) Simplify \(3x^2y \times 4xy^3 \) \(12x^3y^4 \)

9) a) Simplify \(3d + e - d + 4e \) \(2d + 5e \)
 b) Simplify \(3x^2 - x^2 \) \(2x^2 \)
 c) Simplify \(5t + 8d - 2t - 3d \) \(3t + 5d \)
 d) Simplify \(4t \times 2q \) \(8tq \)

10) The table shows some expressions.

<table>
<thead>
<tr>
<th></th>
<th>2(p + p)</th>
<th>2p × p</th>
<th>3p + 2p</th>
<th>2 + 2p</th>
<th>2p + 2p</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two of the expressions always have the same value as 4p. Tick the boxes underneath the two expressions.

11) Expand and simplify
 (i) \(4(x + 5) + 3(x - 6) \) \(7x + 2 \)
 (ii) \(3(2x - 1) - 2(x - 4) \) \(4x + 5 \)
 (iii) \(5(2y + 2) - (y + 3) \) \(9y + 7 \)
1) Expand these brackets
 a) $2(x + 3)$
 $2x + 6$
 b) $3(2x + 4)$
 $6x + 12$
 c) $5(3p – 2q)$
 $15p - 10q$
 d) $4(x^2 + 2y^2)$
 $4x^2 + 8y^2$
 e) $r(r - r^3)$
 $r^2 - r^3$

2) Expand and simplify
 a) $(x + 1)(x + 2)$
 $x^2 + 3x + 2$
 $x^2 + 1x + 2x + 2$
 b) $(x + 3)(2x + 4)$
 $2x^2 + 10x + 12$
 $2x^2 + 6x + 4x + 12$
 c) $(2x + 1)(3x + 2)$
 $6x^2 + 7x + 2$
 $6x^2 + 3x + 4x + 2$

3) Expand and simplify
 a) $(x + 3)(x – 2)$
 $x^2 + x - 6$
 $x^2 + 3x - 2x - 6$
 b) $(x – 1)(x + 4)$
 $x^2 + 3x - 4$
 $x^2 - 1x + 4x - 4$
 c) $(x – 3)(x – 2)$
 $x^2 - 5x + 6$
 $x^2 - 3x - 2x + 6$

4) Expand and simplify
 a) $(2p + 3)(p – 2)$
 $2p^2 - p - 6$
 $2p^2 + 3p - 4p - 6$
 b) $(3t – 2)(2t + 3)$
 $6t^2 + 5t - 6$
 $6t^2 - 4t + 9t - 6$
 c) $(2x – 5)(3x – 2)$
 $6x^2 - 19x + 10$
 $6x^2 - 15x - 4x + 10$

5) Expand and simplify
 a) $(x + 3y)(x + 4y)$
 $x^2 + 7xy + 12y^2$
 $x^2 + 3xy + 4xy +12y^2$
 b) $(2p + q)(3p + 2q)$
 $6p^2 + 7pq + 2q^2$
 $6p^2 + 3pq + 4pq + 2q^2$

6) Expand and simplify
 a) $(2x + 1)^2$
 $4x^2 + 4x + 1$
 $(2x + 1)(2x + 1) = 4x^2 + 2x + 2x + 1$
 b) $(3x – 2)^2$
 $9x^2 - 12x + 4$
 $(3x - 2)(3x – 2) = 9x^2 - 6x - 6x + 4$
 c) $(2p + q)^2$
 $4p^2 + 4pq + q^2$
 $(2p + q)(2p + q) = 4p^2 + 2pq + 2pq + q^2$
1) Factorise
 a) $2x + 4$
 $2(x + 2)$
 b) $2y + 10$
 $2(y + 5)$
 c) $3x + 12$
 $3(x + 4)$
 d) $3x - 6$
 $3(x - 2)$
 e) $5x - 15$
 $5(x - 3)$

2) Factorise
 a) $p^2 + 7p$
 $p(p + 7)$
 b) $x^2 + 4x$
 $x(x + 4)$
 c) $y^2 - 2y$
 $y(y - 2)$
 d) $p^2 - 5p$
 $p(p - 5)$
 e) $x^2 + x$
 $x(x + 1)$

3) Factorise
 a) $2x^2 + 6x$
 $2x(x + 3)$
 b) $2y^2 - 8y$
 $2y(y - 4)$
 c) $5p^2 + 10p$
 $5p(p + 2)$
 d) $7c^2 - 21c$
 $7c(c - 3)$
 e) $6x^2 + 9x$
 $3x(2x + 3)$

4) Factorise
 a) $2x^2 - 4xy$
 $2x(x - 2y)$
 b) $2t^2 + 10tu$
 $2t(t + 5u)$
 c) $6x^2 - 8xy$
 $2x(3x - 4y)$
 d) $3x^3y^2 + 9xy$
 $3xy(xy + 3)$
Solve the following equations

1) \(2p - 1 = 13\) \(p = 7\)
 \(2p = 13 + 1\)
 \(2p = 14\)
 \(p = 7\)

2) \(4y + 1 = 21\) \(y = 5\)
 \(4y = 21 - 1\)
 \(4y = 20\)
 \(y = 5\)

3) \(6x - 7 = 32\) \(x = 6.5\)
 \(6x = 32 + 7\)
 \(6x = 39\)
 \(x = 6.5\)

4) \(x + x + x + x = 20\) \(x = 5\)
 \(4x = 20\)
 \(x = 5\)

5) \(x + 3x = 40\) \(x = 10\)
 \(4x = 40\)
 \(x = 10\)

6) \(5(t - 1) = 20\) \(t = 5\)
 \(5t - 5 = 20\)
 \(5t = 25\)
 \(t = 5\)

7) \(4(5y - 2) = 52\) \(y = 3\)
 \(20y - 8 = 52\)
 \(20y = 60\)
 \(y = 3\)

8) \(4(y + 3) = 24\) \(y = 3\)
 \(4y + 12 = 24\)
 \(4y = 12\)
 \(y = 3\)

9) \(20x - 15 = 18x - 7\) \(x = 4\)
 \(20x - 18x = -7 + 15\)
 \(2x = 8\)
 \(x = 4\)

10) \(4y + 3 = 2y + 10\) \(y = 3.5\)
 \(4y - 2y = 10 - 3\)
 \(2y = 7\)
 \(y = 3.5\)

11) \(2x + 17 = 5x - 4\) \(x = 7\)
 \(4 + 17 = 5x - 2x\)
 \(21 = 3x\)
 \(7 = x\)

12) \(2x + 7 = 16 - 4x\) \(x = 1.5\)
 \(2x + 4x = 16 - 7\)
 \(6x = 9\)
 \(x = 1.5\)

13) \(5(x + 3) = 2(x + 6)\) \(x = -1\)
 \(5x + 15 = 2x + 12\)
 \(5x - 2x = 12 - 15\)
 \(3x = -3\)
 \(x = -1\)

14) \(4(2y + 1) = 2(12 - y)\) \(y = 2\)
 \(8y + 4 = 24 - 2y\)
 \(8y + 2y = 24 - 4\)
 \(10y = 20\)
 \(y = 2\)

15) \(7 - 3x = 2(x + 1)\) \(x = 1\)
 \(7 - 3x = 2x + 2\)
 \(7 - 2 = 2x + 3x\)
 \(5 = 5x\)
 \(1 = x\)

16) \(\frac{x - 3}{2} = 5\) \(x = 13\)
 \(x - 3 = 5 \times 2\)
 \(x - 3 = 10\)
 \(x = 13\)

17) \(\frac{2x + 4}{3} = 7\) \(x = 8.5\)
 \(2x + 4 = 21\)
 \(2x = 17\)
 \(x = 8.5\)

18) \(\frac{40 - x}{3} = 4 + x\) \(x = 7\)
 \(40 - x = (4 + x) \times 3\)
 \(40 - x = 12 + 3x\)
 \(40 - 12 = 3x + x\)
 \(28 = 4x\)
 \(7 = x\)
1) The width of a rectangle is \(x \) centimetres.
The length of the rectangle is \((x + 5)\) centimetres.

The perimeter of the rectangle is 38 centimetres.

\[
P = 4x + 10
\]

a) Find an expression, in terms of \(x \), for the perimeter of the rectangle.
Give your answer in its simplest form.

\[
4x + 10 = 38
\]

\[
4x = 28
\]

\[
x = 7
\]

b) Work out the length of the rectangle.

Length is 12 cm

2) The sizes of the angles, in degrees, of the quadrilateral are

\[
x + 10
\]

\[
2x
\]

\[
x + 80
\]

\[
x + 30
\]

\[
5x + 120 = 360
\]

a) Use this information to write down an equation in terms of \(x \).

\[
5x + 120 = 360
\]

\[
5x = 240
\]

\[
x = 48
\]

b) Use your answer to part (a) to work out the size of the smallest angle of the quadrilateral.

Smallest angle is 58°

3) Sarah buys 6 cups and 6 mugs

A cup costs £ \(x \)
A mug costs £\((x + 3)\)

a) Write down an expression, in terms of \(x \), for the total cost, in pounds, of 6 cups and 6 mugs.

\[
12x + 18
\]

b) If the total cost of 6 cups and 6 mugs is £48, write an equation in terms of \(x \).

\[
12x + 18 = 48
\]

c) Solve your equation to find the cost of a cup and the cost of a mug.

A cup costs £2.50 and a mug costs £5.50
Changing the Subject of a Formula

1) Make \(c \) the subject of the formula.

\[
a = b + cd \quad \Rightarrow \quad c = \frac{a - b}{d}
\]

2) Make \(t \) the subject of the formula.

\[
u = v + 2t \quad \Rightarrow \quad t = \frac{u - v}{2}
\]

3) Make \(n \) the subject of the formula.

\[
M = 3n + 5 \quad \Rightarrow \quad n = \frac{M - 5}{3}
\]

4) Make \(z \) the subject of the formula.

\[
x = 3y + z \quad \Rightarrow \quad z = x - 3y
\]

5) \(r = 5s + 3t \)

a) Make \(t \) the subject of the formula.

\[
t = \frac{r - 5s}{3}
\]

b) Make \(s \) the subject of the formula.

\[
s = \frac{r - 3t}{5}
\]

6) Rearrange \(y = 3x + 1 \) to make \(x \) the subject.

\[
x = \frac{y - 1}{3}
\]

7) Rearrange \(y = \frac{1}{2}x + 2 \) to make \(x \) the subject.

\[
x = 2(y - 2) \quad \text{or} \quad x = 2y - 4
\]

8) Rearrange \(y = \frac{1}{3}x + 1 \) to make \(x \) the subject.

\[
x = 3(y - 1) \quad \text{or} \quad x = 3y - 3
\]
1) Represent this inequality on the number line

-3 ≤ x ≤ 2

2) Represent this inequality on the number line

-1 ≤ x < 5

3) Write down the inequality shown

-4 < x ≤ 4

4) Write down the inequality shown

-5 ≤ x ≤ 3

5) If y is an integer, write down all the possible values of

-2 < y ≤ 5

-1, 0, 1, 2, 3, 4, 5

6) If x is an integer, write down all the possible values of

-9 < x < -5

-8, -7, -6
Solving Inequalities

1) Solve
 a) \(3x - 1 > 5\)
 \[x > 2\]
 b) \(7y + 2 \leq 30\)
 \[y \leq 4\]
 c) \(\frac{x}{2} - 3 \geq 2\)
 \[x \geq 10\]
 d) \(5 + 2x > 7\)
 \[x > 1\]
 e) \(8 < 5p - 2\)
 \[2 < p\]
 f) \(\frac{y}{3} + 5 \geq 3\)
 \[y \geq -6\]
 g) \(\frac{2x}{3} - 5 \geq -3\)
 \[x \geq 3\]
 h) \(6x - 5 > 2x + 3\)
 \[x > 2\]
 i) \(3p - 9 < 6 - 2p\)
 \[p < 3\]
 j) \(5 - 3y < 2y - 10\)
 \[3 < y\]

2) a) Solve the inequality
 \[2z > 7 - 2\]
 \[2z > 5\]
 \[z > 2.5\]
 b) Write down the smallest integer value of \(z\) which satisfies the inequality
 \[2z + 2 \geq 7\]
 \[z = 3\]

3) \(5x + 2y < 10\)
 \(x\) and \(y\) are both integers.

Write down two possible pairs of values that satisfy this inequality.
\[x = \ldots\ldots, y = \ldots\ldots\]
\[5 \times 1 + 2 \times 1 = 7\]
and
\[x = \ldots\ldots, y = \ldots\ldots\]
\[5 \times 1 + 2 \times 2 = 9\]
other pairs of values are possible.
1) The equation
\[x^3 - x = 29 \]
has a solution between 3 and 4

\[
\begin{array}{c|c|c}
\text{x} & \text{3} & \text{4} \\
3^3 - 3 & = 24 & \text{too low} \\
4^3 - 4 & = 60 & \text{too high} \\
3.1^3 - 3.1 & = 26.691 & \text{too low} \\
3.2^3 - 3.2 & = 29.568 & \text{too high} \\
3.15^3 - 3.15 & = 28.105875 & \text{too low} \\
\end{array}
\]

Therefore, \(x = 3.2 \) to 1 decimal place.

You must show all your working.

2) The equation
\[x^3 - 4x = 25 \]
has a solution between 3 and 4

\[
\begin{array}{c|c|c}
\text{x} & \text{3} & \text{4} \\
3^3 - 4 \times 3 & = 15 & \text{too low} \\
4^3 - 4 \times 4 & = 48 & \text{too high} \\
3.4^3 - 4 \times 3.4 & = 25.704 & \text{too high} \\
3.3^3 - 4 \times 3.3 & = 22.737 & \text{too low} \\
3.35^3 - 4 \times 3.35 = 24.195375 & \text{too low} \\
\end{array}
\]

Therefore, \(x = 3.4 \) to 1 decimal place.

You must show all your working.

3) The equation
\[x^3 - 2x = 68 \]
has a solution between 4 and 5

\[
\begin{array}{c|c|c}
\text{x} & \text{4} & \text{5} \\
4^3 - 2 \times 4 & = 56 & \text{too low} \\
5^3 - 2 \times 5 & = 115 & \text{too high} \\
4.2^3 - 2 \times 4.2 & = 65.688 & \text{too low} \\
4.3^3 - 2 \times 4.3 & = 70.907 & \text{too high} \\
4.25^3 - 2 \times 4.25 = 68.265625 & \text{too high} \\
\end{array}
\]

Therefore, \(x = 4.2 \) to 1 decimal place.

You must show all your working.

4) The equation
\[x^3 + 4x = 101 \]
has one solution which is a positive number.

\[
\begin{array}{c|c|c}
\text{x} & \text{3} & \text{4} \\
3^3 + 4 \times 3 & = 39 & \text{too low} \\
4^3 + 4 \times 4 & = 80 & \text{too high} \\
5^3 + 4 \times 5 & = 145 & \text{too high} \\
4.2^3 + 4 \times 4.2 & = 90.888 & \text{too low} \\
4.3^3 + 4 \times 4.3 & = 96.707 & \text{too low} \\
4.4^3 + 4 \times 4.4 & = 102.784 & \text{too high} \\
4.35^3 + 4 \times 4.35 = 99.712875 & \text{too low} \\
\end{array}
\]

Therefore, \(x = 4.4 \) to 1 decimal place.

You must show all your working.
1) Write as a power of 8
 a) \(8^4 \times 8^3\) \(8^7\)
 b) \(8^{12} \div 8^7\) \(8^5\)

2) Write as a power of 3
 a) \(3^2 \times 3^9\) \(3^{11}\)
 b) \(3^{10} \div 3^3\) \(3^7\)

3) Simplify
 a) \(k^5 \times k^2\) \(k^7\)
 b) \(x^4 \div x^2\) \(x^2\)
 c) \(\frac{k^{11}}{k^6}\) \(k^5\)
 d) \((k^8)^2\) \(k^{16}\)

4) Simplify
 \(\text{eg.} \quad (2xy^3)^4 = 2xy^3 \times 2xy^3 \times 2xy^3 \times 2xy^3 = 16x^4y^{12}\)
 a) \((2xy^3)^3\) \(8x^3y^{15}\)
 b) \((2x^2y^2)^3\) \(8x^6y^6\)
 c) \((4xy^4)^2\) \(16x^2y^8\)
 d) \((3xy^2)^4\) \(81x^4y^8\)

5) \(2^x \times 2^y = 2^{10}\)
 and
 \(2^x \div 2^y = 2^2\)
 Work out the value of \(x\) and the value of \(y\).
 \(x = 6\) and \(y = 4\)

6) \(5^x \times 5^y = 5^{12}\)
 and
 \(5^x \div 5^y = 5^6\)
 Work out the value of \(x\) and the value of \(y\).
 \(x = 9\) and \(y = 3\)

7) \(a = 2^x, b = 2^y\)
 Express in terms of \(a\) and \(b\)
 a) \(2^{x+y}\) \(ab\)
 b) \(2^{2x}\) \(a^2\)
 c) \(2^{3y}\) \(b^3\)
 d) \(2^{x+2y}\) \(ab^2\)
1. Write down the first 5 terms and the 10th term of the following sequences:

 eg. \(2n + 1\)
 3, 5, 7, 9, 11, 21

 a) \(2n + 2\)
 4, 6, 8, 10, 12, 22

 b) \(3n + 1\)
 4, 7, 10, 13, 16, 31

 c) \(n + 3\)
 4, 5, 6, 7, 8, 13

 d) \(7n\)
 7, 14, 21, 28, 35, 70

 e) \(3n – 1\)
 2, 5, 8, 11, 14, 29

 f) \(7n – 3\)
 4, 11, 18, 25, 32, 67

2. Find the \(n^{th}\) term of the following sequences:

 a) 5, 10, 15, 20... \(5n\)

 b) 5, 8, 11, 14... \(3n + 2\)

 c) 1, 8, 15, 22... \(7n - 6\)

 d) 22, 18, 14, 10... \(-4n + 26\)

 e) -3, 3, 9, 15... \(6n - 9\)

 f) 4, -1, -6, -11... \(-5n + 9\)

3. Here are some patterns made from sticks.

 a) Draw pattern 4 in the space, below...

 b) How many sticks are used in

 (i) pattern 10 \(51\) sticks

 (ii) pattern 20 \(101\) sticks

 (iii) pattern 50 \(251\) sticks

 c) Find an expression, in terms of \(n\), for the number of sticks in pattern number \(n\). \(5n + 1\)

 d) Which pattern number can be made using 301 sticks? Pattern 60
1) a) Complete the table of values for \(y = 2x - 3 \)

<table>
<thead>
<tr>
<th>x</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-5</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

b) Using the axes on the right draw the graph of \(y = 2x - 3 \)

c) Use your graph to work out the value of \(y \) when \(x = 2.5 \) \(y = 2 \)

d) Use your graph to work out the value of \(x \) when \(y = 4.5 \) \(x = 3.75 \)

2) a) Complete the table of values for \(y = 2 - x \)

<table>
<thead>
<tr>
<th>x</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
</tr>
</tbody>
</table>

b) Using the axes on the right, again, draw the graph of \(y = 2 - x \)

3) a) Complete the table of values for \(y = \frac{1}{2}x - 1 \)

<table>
<thead>
<tr>
<th>x</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-1\frac{1}{2}</td>
<td>-1</td>
<td>-\frac{1}{2}</td>
<td>0</td>
<td>\frac{1}{2}</td>
<td>1</td>
</tr>
</tbody>
</table>

b) Draw the graph of \(y = \frac{1}{2}x - 1 \)

c) Use your graph to find the value of \(y \) when \(x = 3.5 \) \(x = 0.75 \)
1) Find the equations of lines A, B and C on the axes below

\[\text{Line A: } y = 2x + 1 \]
\[\text{Line B: } y = \frac{1}{2}x + 4 \]
\[\text{Line C: } y = -x + 8 \]
\[\text{or Line C: } y = 8 - x \]

2) Find the equations of lines A, B and C on the axes below

\[\text{Line A: } y = 2x - 2 \]
\[\text{Line B: } y = -\frac{1}{2}x + 4 \]
\[\text{Line C: } y = -x \]
1) On the axes below, the graphs of \(y = x + 2 \) and \(y = 6 - x \) have been drawn. Use the graphs to solve the simultaneous equations \(y = x + 2 \) and \(y = 6 - x \)

\[x = 2 \text{ and } y = 4 \]

2) On the axes below draw the graphs of \(y = 2x + 1 \) and \(y = 7 - x \) Use your graphs to solve the simultaneous equations \(y = 2x + 1 \) and \(y = 7 - x \)

\[x = 2 \text{ and } y = 5 \]
1) a) Complete the table of values for \(y = 2x^2 - 3x \)

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>14</td>
<td>5</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>

b) On the grid, draw the graph of \(y = 2x^2 - 3x \) for values of \(x \) from -2 to 3

c) Use the graph to find the value of \(y \) when \(x = -1.5 \) \(y = 9 \)
d) Use the graph to find the values of \(x \) when \(y = 4 \) \(x = -0.85 \) or \(x = 2.33 \)

2) a) Complete the table of values for \(y = x^2 - 2x \)

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

b) On the grid, draw the graph of \(y = x^2 - 2x \) for values of \(x \) from -2 to 3

c) (i) On the same axes draw the straight line \(y = 2.5 \)
 (ii) Write down the values of \(x \) for which \(x^2 - 2x = 2.5 \) \(x = -0.89 \) or \(x = 2.9 \)
1) Sarah travelled 20 km from home to her friend’s house. She stayed at her friend’s house for some time before returning home. Here is the travel graph for part of Sarah’s journey.

- **a)** At what time did Sarah leave home? **10:10**
- **b)** How far was Sarah from home at 10:30? **13.5 km**

Sarah left her friend’s house at 11:10 to return home.

- **c)** Work out the time in minutes Sarah spent at her friend’s house. **30 minutes**

Sarah returned home at a steady speed.

- **d)** Complete the travel graph.

- **e)** Work out Sarah’s average speed on her journey from her home to her friend’s house. Give your answer in kilometres per hour. **40 km/h**

- **f)** Work out Sarah’s average speed on her journey home from her friend’s house. Give your answer in kilometres per hour. **30 km/h**
1) Find the length of side AC. **13.9cm**

 Give your answer to 1 decimal place.

 \[12^2 = 144\]
 \[7^2 = 49\]
 \[193 = 13.9\]

2) Find the length of side QR **5.9cm**

 Give your answer to 1 decimal place.

 \[7.6^2 = 57.76\]
 \[4.8^2 = 23.04\]
 \[34.72\]
 \[\sqrt{34.72} = 5.9\]

3) Find the length of side SU **18.2cm**

 Give your answer to 1 decimal place.

 \[23^2 = 529\]
 \[14^2 = 196\]
 \[333\]
 \[\sqrt{333} = 18.2\]

4) Below is a picture of a doorway. **2.2m**

 Find the size of the diagonal of the doorway. Give your answer to 1 decimal place.

 \[2.1^2 = 4.41\]
 \[0.8^2 = 0.64\]
 \[5.05\]
 \[\sqrt{5.05} = 2.2\]

5) In the sketch of the rectangular field, below, James wants to walk from B to D.

 Which of the following routes is shorter and by how much? From B to C to D or straight across the field from B to D. **110m - 78m = 32m**

 Give your answer to the nearest metre.

6) Fiona keeps her pencils in a cylindrical beaker as shown below. The beaker has a diameter of 8cm and a height of 17cm.

 Will a pencil of length 19cm fit in the beaker without poking out of the top? **No. The diagonal is only 18.8cm.**
1) Points P and Q have coordinates (1, 4) and (5, 2).
Calculate the shortest distance between P and Q.
Give your answer correct to 1 decimal place.

\[\sqrt{20} = 4.5\]

2) Points A and B have coordinates (-4, 3) and (3, -2).
Calculate the shortest distance between A and B.
Give your answer correct to 1 decimal place.

\[\sqrt{74} = 8.6\]
1) Find the surface area of this cube and cuboid.

Cube
- Surface area = 96 cm²
- 16 cm²

Cuboid
- Surface area = 280 cm²
- 60 cm²

2) Find the surface area of this cuboid.
- Surface area = 14.22 m²

3) A water tank measures 2 m by 3 m by 4 m.
 It has no top.
 The outside of the tank, including the base, has to be painted.
 Calculate the surface area which will be painted.
 - Surface area = 40 m²

4) A water tank measures 2 m by 5 m by 6 m.
 It has no top.
 The outside of the tank, including the base, has to be painted.
 A litre of paint will cover an area of 4.3 m².
 Paint is sold in 5 litre tins and each tin costs £13.50.
 How much will it cost to paint the tank? **£54**
 You must show all your working.

 Surface area to be painted:
 - 5 × 2 = 10 m²
 - 5 × 2 = 10 m²
 - 6 × 2 = 12 m²
 - 6 × 2 = 12 m²
 - 6 × 5 = 30 m²
 - **74 m² in total**

 Litres of paint needed:
 - 74 ÷ 4.3 = 17.2 litres
 - 3 tins is only 15 litres
 - so 4 tins must be bought.
 - 4 × £13.50 = £54
1) Find the surface area of this triangular prism. \[84 \text{ cm}^2\] \[6 + 6 + 30 + 24 + 18\]

2) Find the surface area of this triangular prism. \[660 \text{ cm}^2\] \[60 + 60 + 195 + 195 + 150\]

3) With the aid of Pythagoras’ Theorem, find the surface area of this triangular prism.
Give your answer correct to 2 significant figures. \[120 \text{ cm}^2\] \[5.29 + 5.29 + 42.78 + 21.39 + 47.43\]
1) The diagram shows a cuboid.
Work out the volume of the cuboid.
\[V = 22500 \text{ cm}^3 \]

2) Calculate the volume of this triangular prism.
\[V = 54 \text{ cm}^3 \]

3) An ice hockey puck is in the shape of a cylinder with a radius of 3.8 cm and a thickness of 2.5 cm.
Take \(\pi \) to be 3.14
Work out the volume of the puck.
\[V = 113.354 \text{ cm}^3 \]

4) A cuboid has:
- a volume of 80 cm\(^3\)
- a length of 5 cm
- a width of 2 cm

Work out the height of the cuboid.
\[H = 8 \text{ cm} \]

5) Work out the maximum number of boxes which can fit in the carton.
160 boxes will fit.
\[1600000 \div 10000 = 160 \]
1) The diagram shows two quadrilaterals that are mathematically similar.

\[\text{Scale factor} = \frac{14}{4} = 3.5 \]

a) Calculate the length of AB \[28 \text{ cm} \quad AB = PQ \times 3.5 \]
b) Calculate the length of PS \[6 \text{ cm} \quad PS = AD \div 3.5 \]

2) SV is parallel to TU.
RST and RVU are straight lines.
RS = 9 cm, ST = 3 cm, TU = 7 cm, RV = 6 cm

\[12 \div 9 = 1.3333333 \]

Calculate the length of VU. \[2 \text{ cm} \]

\[RU = 1.3333333 \times 6 \]
\[RU = 8 \]
\[VU = RU - RV \]
\[VU = 8 - 6 \]

3) BE is parallel to CD.
ABC and AED are straight lines.
AB = 4 cm, BC = 6 cm, BE = 5 cm, AE = 4.4 cm

\[\text{Scale factor} = 2.5 \quad (10 \div 4) \]

a) Calculate the length of CD. \[12.5 \text{ cm} \]
b) Calculate the length of ED. \[6.6 \text{ cm} \]
1) Change 9 m\(^2\) into cm\(^2\) \[90000 \text{ cm}^2\]

2) How many square metres are there in 5 square kilometres? \[5000000 \text{ m}^2\]

3) Change 4 cm\(^2\) into mm\(^2\) \[400 \text{ mm}^2\]

4) Convert 6.5 m\(^2\) into mm\(^2\) \[6500000 \text{ mm}^2\]

5) Change 2 m\(^3\) into cm\(^3\) \[2000000 \text{ cm}^3\]

6) How many cubic millimetres are there in 3 cubic centimetres? \[3000 \text{ mm}^3\]

7) Change 7 m\(^3\) into mm\(^3\) \[7000000000 \text{ mm}^3\]

8) A tiler wants to tile a rectangular wall which measures 4 m by 2.5 m. Each tile measures 16 cm by 10 cm. How many tiles will he need for the wall? \[625\]

9) A carpet-fitter is laying carpet tiles in a rectangular floor which measures 7.5 m by 4.5 m. Each carpet tile measures 50 cm by 50 cm. How many carpet tiles will he need for the floor? \[135\]
1. A silver necklace has a mass of 123 grams, correct to the nearest gram.
 a) Write down the least possible mass of the necklace. 122.5 g
 b) Write down the greatest possible mass of the necklace. 123.5 g

2. Each of these measurements was made correct to one decimal place. Write the maximum and minimum possible measurement in each case.
 a) 4.6 cm
 max: 4.65 cm
 min: 4.55 cm
 b) 0.8 kg
 max: 0.85 kg
 min: 0.75 kg
 c) 12.5 litres
 max: 12.55 L
 min: 12.45 L
 d) 25.0 km/h
 max: 25.05 km/h
 min: 24.95 km/h
 e) 10.3 s
 max: 10.35 s
 min: 10.25 s
 f) 36.1 m
 max: 36.15 m
 min: 36.05 m
 g) 136.7 m/s
 max: 136.75 m/s
 min: 136.65 m/s
 h) 0.1 g
 max: 0.15 g
 min: 0.05 g

3. Each side of a regular octagon has a length of 20.6 cm, correct to the nearest millimetre.
 a) Write down the least possible length of each side. 20.55 cm
 b) Write down the greatest possible length of each side. 20.65 cm
 c) Write down the greatest possible perimeter of the octagon. 165.2 cm

4. A girl has a pencil that is of length 12 cm, measured to the nearest centimetre. Her pencil case has a diagonal of length 12.3 cm, measured to the nearest millimetre.
 Explain why it might not be possible for her to fit the pen in the pencil case.
 12 cm to the nearest cm has a maximum possible length of 12.5 cm.
 12.3 cm to the nearest mm has a minimum possible length of 12.25 cm.
 A 12.5 cm pencil won't fit into a pencil case with a diagonal length of 12.25 cm.

5. A square has sides of length 7 cm, correct to the nearest centimetre.
 a) Calculate the lower bound for the perimeter of the square. 26 cm 6.5 + 6.5 + 6.5 + 6.5
 b) Calculate the upper bound for the area of the square. 56.25 cm² 7.5 × 7.5
1) Jane runs 200 metres in 21.4 seconds.
Work out Jane’s average speed in metres per second.
Give your answer correct to 1 decimal place.

\[
S = \frac{D}{T} = \frac{200}{21.4} = 9.3 \text{ m/s}
\]

2) A car travels at a steady speed and takes five hours to travel 310 miles.
Work out the average speed of the car in miles per hour.

\[
S = \frac{D}{T} = \frac{310}{5} = 62 \text{ mph}
\]

3) A plane flies 1440 miles at a speed of 240 mph.
How long does it take?

\[
T = \frac{D}{S} = \frac{1440}{240} = 6 \text{ hours}
\]

4) A marathon runner runs at 7.6 mph for three and a half hours.
How many miles has he run?

\[
D = S \times T = 7.6 \times 3.5 = 26.6 \text{ miles}
\]

5) A car takes 15 minutes to travel 24 miles.
Find its speed in mph.

\[
S = \frac{D}{T} = \frac{24}{0.25} = 96 \text{ mph}
\]

6) A cyclist takes 10 minutes to travel 2.4 miles.
Calculate the average speed in mph.

\[
S = \frac{D}{T} = \frac{2.4}{0.16} = 15 \text{ mph}
\]

7) An ice hockey puck has a volume of 113 cm³.
It is made out of rubber with a density of 1.5 grams per cm³.
Work out the mass of the ice hockey puck.

\[
M = D \times V = 1.5 \times 113 = 169.5 \text{ g}
\]

8) An apple has a mass of 160 g and a volume of 100 cm³.
Find its density in g/cm³.

\[
D = \frac{M}{V} = \frac{160}{100} = 1.6 \text{ g/cm³}
\]

9) A steel ball has a volume of 1500 cm³.
The density of the ball is 95 g/cm³.
Find the mass of the ball in kg.

\[
M = D \times V = 95 \times 1500 = 142500 \text{ g}
\]

10) The mass of a bar of chocolate is 1800 g.
The density of the chocolate is 9 g/cm³.
What is the volume of the bar of chocolate?

\[
V = \frac{M}{D} = \frac{1800}{9} = 200 \text{ cm³}
\]
1) Using ruler and compasses, bisect line AB.

2) Using ruler and compasses
 a) Bisect line AB
 b) Bisect line BC
 c) Bisect line AC
 d) Place your compass point where your three lines cross*
 Now open them out until your pencil is touching vertex A. Draw a circle using this radius.

* If your three lines don’t cross at a point then you have a mistake somewhere or just haven’t been accurate enough.
1) Use ruler and compasses to **construct** the perpendicular to the line segment AB that passes through the point P. You must show all construction lines.

2) Use ruler and compasses to **construct** the perpendicular to the line segment CD that passes through the point P. You must show all construction lines.
1) Using ruler and compasses, bisect angle ABC.

2) The diagram below shows the plan of a park.
 The border of the park is shown by the quadrilateral RSUV

 There are two paths in the park. One is labelled TR and the other TV.
 A man walks in the park so that he is always the same distance from both paths.
 Using ruler and compasses show exactly where the man can walk.
1) ABCD is a rectangle.
Shade the set of points inside the rectangle which are **both**
more than 4 centimetres from the point D
and more than 1 centimetre from the line AB.

2) Two radio transmitters, A and B, are situated as below.
Transmitter A broadcasts signals which can be heard up to 3 km from A.
Transmitter B broadcasts signals which can be heard up to 6 km from B.
Shade in the area in which radio signals can be heard from both transmitters.
Use a scale of 1 cm = 1 km.
1) Point C is equidistant from points A and B.
Sarah rolls a ball from point C.
At any point on its path the ball is the same distance from point A and point B.
 a) On the diagram above draw accurately the path that the ball will take.
 b) On the diagram shade the region that contains all the points that are no more than 3cm from point B.

2) The map shows part of a lake.
In a competition for radio-controlled ducks, participants have to steer their ducks so that:
 its path between AB and CD is a straight line
 this path is always the same distance from A as from B
a) On the map, draw the path the ducks should take.

Scale: 1 cm represents 10 m

There is a practice region for competitors.
This is the part of the lake which is less than 30 m from point E.
b) Shade the practice region on the map.
1) School B is due east of school A.
 C is another school.
 The bearing of C from A is 065°.
 The bearing of C from B is 313°.

 Complete the scale drawing below.
 Mark with a cross the position of C.

2) In the diagram, point A marks the position of Middlewitch.
 The position of Middlemarch is to be marked on the diagram as point B
 On the diagram, mark with a cross the position of B given that:
 B is on a bearing of 320° from A and
 B is 5 cm from A

3) Work out the bearing of
 a) B from P 222°
 b) P from A 244°

 Diagram NOT accurately drawn.
1) Ahmad does a statistical experiment.
He throws a dice 600 times.
He scores one, 200 times.
Is the dice fair? Explain your answer. **Two possible answers:**
No, you would expect to score 1 about 100 times.
Yes, although you would expect 1 about 100 times, you could still get it 200 times.

2) Chris has a biased coin.
The probability that the biased coin will land on a tail is 0.3
Chris is going to flip the coin 150 times.
Work out an estimate for the number of times the coin will land on a tail. **45 times**

\[0.3 \times 150 = 45\]

3) On a biased dice, the probability of getting a six is \(\frac{2}{3}\).
The dice is rolled 300 times.
Work out an estimate for the number of times the dice will land on a six. **200 times**

\[\frac{2}{3} \times 300 = 200\]

4) On a biased dice, the probability of getting a three is 0.5
The dice is rolled 350 times.
Work out an estimate for the number of times the dice will land on a three. **175 times**

\[0.5 \times 350 = 175\]

5) Jenny throws a biased dice 100 times.
The table shows her results.

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
</tr>
</tbody>
</table>

a) She throws the dice once more.
Find an estimate for the probability that she will get a four. **\(\frac{24}{100}\) or 0.24**

b) If the dice is rolled 250 times, how many times would you expect to get a five? **45 times**

\[\frac{18}{100} \times 250 = 45\]
1) The number of pens in each pupil’s pencil case in a classroom has been counted. The results are displayed in a table.

<table>
<thead>
<tr>
<th>Number of pens</th>
<th>Number of pupils</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4 0 × 4</td>
</tr>
<tr>
<td>1</td>
<td>6 1 × 6</td>
</tr>
<tr>
<td>2</td>
<td>7 2 × 7</td>
</tr>
<tr>
<td>3</td>
<td>5 3 × 5</td>
</tr>
<tr>
<td>4</td>
<td>3 4 × 3</td>
</tr>
<tr>
<td>5</td>
<td>1 5 × 1</td>
</tr>
</tbody>
</table>

| Total | 26 | 52 |

a) Work out the total number of pens in the classroom. 52 pens
b) Write down the modal number of pens in a pencil case. 2 pens
c) Work out the mean number of pens in a pencil case. 2 pens \(\frac{52}{26} \)
d) Work out the range of the number of pens in a pencil case. 5 pens 5 - 0

2) Thomas is analysing the local football team. He records the number of goals scored in each football match in the past twelve months.

<table>
<thead>
<tr>
<th>Goals scored</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7 0 × 7</td>
</tr>
<tr>
<td>1</td>
<td>5 1 × 5</td>
</tr>
<tr>
<td>2</td>
<td>3 2 × 3</td>
</tr>
<tr>
<td>3</td>
<td>6 3 × 6</td>
</tr>
<tr>
<td>4</td>
<td>2 4 × 2</td>
</tr>
<tr>
<td>5</td>
<td>1 5 × 1</td>
</tr>
<tr>
<td>6</td>
<td>1 6 × 1</td>
</tr>
</tbody>
</table>

| Total | 25 | 48 |

Thomas said that the mode is 7
Thomas is wrong. Thomas gave the highest frequency instead of giving the number of “goals scored” associated with it.
a) Explain why.
b) Calculate the mean number of goals scored.

<table>
<thead>
<tr>
<th>Goals scored</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>25</td>
</tr>
</tbody>
</table>

1.92 goals \(\frac{48}{25} \)

3) Tina recorded how long, in minutes, she watched TV for each day during a month.

a) Find the class interval in which the median lies. 30 < t < 45
b) Work out an estimate for the mean amount of time Tina watched TV each day of this month. Give your answer to the nearest minute.

<table>
<thead>
<tr>
<th>Time (t in minutes)</th>
<th>Frequency</th>
<th>MP</th>
<th>MP × F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 < t ≤ 20</td>
<td>5</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>20 < t ≤ 30</td>
<td>9</td>
<td>25</td>
<td>225</td>
</tr>
<tr>
<td>30 < t ≤ 45</td>
<td>8</td>
<td>37.5</td>
<td>300</td>
</tr>
<tr>
<td>45 < t ≤ 60</td>
<td>6</td>
<td>52.5</td>
<td>315</td>
</tr>
<tr>
<td>60 < t ≤ 90</td>
<td>3</td>
<td>75</td>
<td>225</td>
</tr>
</tbody>
</table>

| Total | 31 | 1140 |

37 minutes \(\frac{1140}{31} \)
Questionnaires

1) A survey into how people communicate with each other is carried out. A questionnaire is designed and two of the questions used are shown below. The questions are not suitable. For each question, write down a reason why.

a) Do you prefer to communicate with your friend by phone (voice call) or by text message?

Yes [] No []

Reason: This is not a question you can answer ‘yes’ or ‘no’ to.

b) How many text messages do you send?

1 [] 2 [] 3 [] 4 []

Reason: Response boxes need to include ‘0’ and ‘more than 4’. Question needs a time frame eg per day, per week.

2) A restaurant owner has made some changes. He wants to find out what customers think of these changes. He uses this question on a questionnaire.

“What do you think of the changes in the restaurant?”

Excellent [] Very good [] Good []

a) Write down what is wrong with this question.

There is no negative or neutral response box.

This is another question on the questionnaire.

“How often do you come to the restaurant?”

Very often [] Not often []

b) i) Write down one thing that is wrong with this question.

Question needs a time frame eg per week, per month.
Response boxes need to be more specific eg once a week, twice a week.

ii) Design a better question to use.

You should include some response boxes.

How many times do you visit this restaurant per month?

None [] Once [] Twice [] More than twice []
1) Change the following to normal (or ordinary) numbers.
 a) 4.3×10^4
 43 000
 c) 7.03×10^3
 7 030
 e) 1.01×10^4
 10 100
 b) 6.79×10^6
 6 790 000
 d) 9.2034×10^2
 920.34
 f) 4×10^5
 400 000

2) Change the following to normal (or ordinary) numbers.
 a) 4.3×10^{-4}
 0.00043
 c) 7.03×10^{-3}
 0.00703
 e) 1.01×10^{-4}
 0.000101
 b) 6.79×10^{-6}
 0.00000679
 d) 9.2034×10^{-2}
 0.092034
 f) 4×10^{-5}
 0.00004

3) Change the following to standard form.
 a) 360
 3.6×10^2
 c) 520 000
 5.2×10^5
 e) 1 003
 1.003×10^3
 b) 8 900
 8.9×10^3
 d) 62 835
 6.2835×10^4
 f) 6 450 000
 6.45×10^6

4) Change the following to standard form.
 a) 0.71
 7.1×10^{-1}
 c) 0.00076
 7.6×10^{-4}
 e) 0.00009
 9×10^{-5}
 b) 0.0008
 8×10^{-4}
 d) 0.0928
 9.28×10^{-2}
 f) 0.00000173
 1.73×10^{-6}

5) Work out the following, giving your answer in standard form.
 a) $3 000 \times 5 000$
 15×10^7
 c) $5 \times 4 \times 10^3$
 20×10^3
 g) $7 \times 10^2 \times 3 \times 10^{-4}$
 2.1×10^{-1}
 h) $2 \times 3.6 \times 10^5$
 7.2×10^5
 b) 240×0.0002
 0.048
 e) $\frac{8 \times 10^4}{4 \times 10^2}$
 2×10^2
 h) $2 \times 3.6 \times 10^5$
 7.2×10^5
 i) $6 \times 4.1 \times 10^3$
 24.6×10^3
 c) $9 \times 1.1 \times 10^7$
 9.9×10^7
 f) $9 \times 2 \times 10^5$
 18×10^3
 i) $6 \times 4.1 \times 10^3$
 24.6×10^3
1) Work out the following, giving your answer in standard form.

a) \((6 \times 10^2) \times (8 \times 10^4)\) \(4.8 \times 10^7\)

b) \((2 \times 10^5) + (3 \times 10^4)\) \(2.3 \times 10^6\)

c) \(\frac{3 \times 10^3}{6 \times 10^5}\) \(5 \times 10^7\)

d) \((9.2 \times 10^5) \div (2 \times 10^3)\) \(4.6 \times 10^3\)

2) A spaceship travelled for \(5 \times 10^3\) hours at a speed of \(9 \times 10^4\) km/h.

a) Work out the distance travelled by the spaceship. Give your answer in standard form. \(4.5 \times 10^8\) km

Another spaceship travelled a distance of \(2 \times 10^7\) km, last month. This month it has travelled \(5 \times 10^6\) km.

b) Work out the total distance travelled by the spaceship over these past two months. Give your answer as a normal (or ordinary) number. \(25\,000\,000\) km

3) Work out the following, giving your answer in standard form, correct to 2 significant figures.

a) \(2.6 \times 10^3 \times 4.3 \times 10^4\) \(1.1 \times 10^6\)

b) \((7.5 \times 10^5) \times (1.9 \times 10^{-2})\) \(1.4 \times 10^4\)

c) \(\frac{9.435 \times 10^5}{3.28 \times 10^4}\) \(2.9 \times 10^2\)

d) \(\frac{5.98 \times 10^8}{6.14 \times 10^7}\) \(9.7 \times 10^9\)

4) Work out the following, giving your answer in standard form correct to 3 significant figures.

a) \(\frac{5.76 \times 10^7 + 3.89 \times 10^9}{7.18 \times 10^2}\) \(5.50 \times 10^{10}\)

b) \(\frac{7.2 \times 10^2 - 5.4 \times 10^{-1}}{9.25 \times 10^7}\) \(-5.06 \times 10^5\)

c) \(\frac{3 \times 10^8 \times 2 \times 10^7}{3 \times 10^8 + 2 \times 10^7}\) \(1.88 \times 10^7\)

d) \(\frac{3 \times 3.2 \times 10^{12} \times 1.5 \times 10^{12}}{3.2 \times 10^{12} - 1.5 \times 10^{12}}\) \(8.47 \times 10^{12}\)

5) A microsecond is 0.000 001 seconds.

a) Write the number 0.000 001 in standard form. \(1 \times 10^{-6}\)

A computer does a calculation in 3 microseconds.

b) How many of these calculations can the computer do in 1 second? \(1 \div (3 \times 10^{-6})\) Give your answer in standard form, correct to 3 significant figures. \(3.33 \times 10^5\)

6) 340 000 tomato seeds weigh 1 gram. Each tomato seed weighs the same.

a) Write the number 340 000 in standard form. \(3.4 \times 10^5\)

b) Calculate the weight, in grams, of one tomato seed. Give your answer in standard form, correct to 2 significant figures. \(2.9 \times 10^{-6}\) \(1 \div (3.4 \times 10^5)\)
1) A car dealer is comparing his sales over the past two years. In 2006, he sold 175 cars. In 2007, he sold 196 cars. Work out the percentage increase in the number of cars sold. 12%

\[
\frac{196 - 175}{175} \times 100 = 12
\]

2) In September 2005, the number of pupils attending MathsWatch College was 1352. In September 2006, the number of pupils attending MathsWatch College was 1014. Work out the percentage decrease in the number of pupils attending MathsWatch College. 25%

\[
\frac{1352 - 1014}{1352} \times 100 = 25
\]

3) The usual price of a shirt is £32.50. In a sale, the shirt is reduced to £29.25. What is the percentage reduction? 10%

\[
\frac{32.50 - 29.25}{32.50} \times 100 = 10
\]

4) Olivia opened an account with £750 at the MathsWatch Bank. After one year, the bank paid her interest. She then had £795 in her account. Work out, as a percentage, MathsWatch Bank’s interest rate. 6%

\[
\frac{795 - 750}{750} \times 100 = 6
\]

5) Ken buys a house for £270 000 and sells it two years later for £300 000. What is his percentage profit? Give your answer to 2 significant figures. 11%

\[
\frac{300 000 - 270 000}{270 000} \times 100 = 11
\]

6) Shelley bought some items at a car boot sale and then sold them on ebay. Work out the percentage profit or loss she made on each of these items.

a) Trainers bought for £15, sold for £20 33% profit

b) DVD recorder bought for £42, sold for £60.90 45% profit

c) Gold necklace bought for £90, sold for £78.30 13% loss

d) A DVD collection bought for £120, sold for £81.60 32% loss
1) Henry places £6000 in an account which pays 4.6% compound interest each year. Calculate the amount in his account after 2 years. £6564.70

\[6000 \times 1.046^2 = 6564.70 \]

2) Sarah puts £8600 in a bank. The bank pays compound interest of 3.8% per year. Calculate the amount Sarah has in her account after 4 years. £9983.62

\[8600 \times 1.038^4 = 9983.62 \]

3) Mary deposits £10000 in an account which pays 5.6% compound interest per year. How much will Mary have in her account after 5 years? £13131.66

\[10000 \times 1.056^5 = 13131.66 \]

4) Susan places £7900 in an account which pays 2.4% compound interest per year. How much interest does she earn in 3 years? £582.56

\[7900 \times 1.024^3 = 8482.56 \qquad £8482.56 - £7900 = £582.56 \]

5) Harry puts money into an account which pays 6% compound interest per year. If he puts £23000 in the account for 5 years how much interest will he earn altogether? £7779.19

\[23000 \times 1.06^5 = 30779.19 \qquad £30779.19 - £23000 = £7779.19 \]

6) Laura buys a new car for £14600. The annual rate of depreciation is 23%. How much is the car worth after 3 years? £6665.38

\[14600 \times 0.77^3 = 6665.38 \]

7) The rate of depreciation of a particular brand of computer is 65% per year. If the cost of the computer when new is £650 how much is it worth after 2 years? £79.63

\[650 \times 0.35^2 = 79.63 \]

8) Sharon pays £3500 for a secondhand car. The annual rate of depreciation of the car is 24%. How much will it be worth four years after she has bought it? £1167.68

\[3500 \times 0.76^4 = 1167.68 \]

9) Dave places £17000 in an account which pays 4% compound interest per year. How many years will it take before he has £19122.68 in the bank? 3 years

\[17000 \times 1.04^3 = 19122.68 \]

10) A new motorbike costs £8900. The annual rate of depreciation is 18% per year. After how many years will it be worth £2705.66? 6 years

\[8900 \times 0.82^6 = 2705.66 \]
1) In a sale, normal prices are reduced by 20%.
The sale price of a shirt is £26
Calculate the normal price of the shirt. £32.50
\[(26 \div 80) \times 100 = 32.5\]

2) A car dealer offers a discount of 15% off the normal price of a car for cash.
Emma pays £6120 cash for a car.
Calculate the normal price of the car. £7200
\[(6120 \div 85) \times 100 = 7200\]

3) In a sale, normal prices are reduced by 13%.
The sale price of a DVD recorder is £108.75
Calculate the normal price of the DVD recorder. £125
\[(108.75 \div 87) \times 100 = 125\]

4) A salesman gets a basic wage of £160 per week plus a commission of 30% of the sales he makes that week.
In one week his total wage was £640
Work out the value of the sales he made that week. £1600
\[640 - 160 = 480\]
\[(480 \div 30) \times 100 = 1600\]

5) Jason opened an account at MathsWatch Bank.
MathsWatch Bank’s interest rate was 4%.
After one year, the bank paid him interest.
The total amount in his account was then £1976
Work out the amount with which Jason opened his account. £1900
\[(1976 \div 104) \times 100 = 1900\]

6) Jonathan’s weekly pay this year is £960.
This is 20% more than his weekly pay last year.
Tess says “This means Jonathan’s weekly pay last year was £768”.
Tess is wrong.
a) Explain why Tess has calculated 20% of £960, and subtracted it.
b) Work out Jonathan’s weekly pay last year. £800
\[(960 \div 120) \times 100 = 800\]

7) The price of all rail season tickets to London increased by 4%.
a) The price of a rail season ticket from Oxford to London increased by £122.40
Work out the price before this increase. £3060
\[(122.40 \div 4) \times 100 = 3060\]
b) After the increase, the price of a rail season ticket from Newport to London was £2932.80
Work out the price before this increase. £2820
\[(2932.80 \div 104) \times 100 = 2820\]
Four Rules of Fractions

Work out

1) \(\frac{2}{3} + \frac{1}{5} = \frac{13}{15} \)
2) \(\frac{2}{3} + 2\frac{1}{4} = 4\frac{5}{12} \)
3) \(\frac{2}{5} + \frac{3}{8} = \frac{31}{40} \)
4) \(\frac{3}{4} + \frac{1}{6} = \frac{11}{12} \)
5) \(\frac{3}{5} - 1\frac{3}{7} = 1\frac{13}{20} \)
6) \(\frac{4}{5} \times \frac{2}{9} = \frac{8}{45} \)
7) \(14\frac{3}{4} - 11\frac{1}{2} = 3\frac{3}{4} \)
8) \(\frac{9}{10} - \frac{3}{7} = \frac{33}{70} \)
9) \(\frac{4}{9} + \frac{12}{18} = \frac{2}{3} \)
10) \(\frac{7}{10} \times \frac{5}{8} = \frac{7}{16} \)
11) \(\frac{2}{3} \times \frac{3}{4} = \frac{1}{2} \)
12) \(\frac{11}{12} - \frac{5}{6} = \frac{1}{12} \)
13) \(2\frac{1}{4} + \frac{3}{5} = 3\frac{3}{4} \)
14) \(2\frac{2}{5} \times 1\frac{1}{2} = 3\frac{1}{3} \)
15) \(\frac{1}{3} + \frac{3}{5} = \frac{14}{15} \)
16) \(1 - (\frac{1}{2} + \frac{1}{6}) = \frac{1}{3} \)
17) \(1 - (\frac{1}{5} + \frac{3}{8}) = \frac{17}{40} \)
18) \(2\frac{1}{5} \times 3\frac{1}{2} = 8\frac{1}{6} \)
19) \(\frac{4}{7} + \frac{1}{3} = \frac{19}{21} \)
20) \(3\frac{1}{5} + 2\frac{3}{4} = 6\frac{1}{12} \)
21) \(\frac{2}{5} \times \frac{3}{7} = \frac{6}{35} \)
22) \(5\frac{2}{3} - 2\frac{3}{4} = 2\frac{11}{12} \)
23) \(2\frac{1}{2} + 1\frac{2}{3} = 4\frac{1}{6} \)
24) \(1\frac{1}{2} + 2\frac{2}{7} = 3\frac{29}{35} \)
25) \(3\frac{3}{4} + 1\frac{1}{5} = 15\frac{1}{4} \)
26) \(12\frac{1}{2} + \frac{5}{8} = 20 \)
27) \(1 - (\frac{3}{10} + \frac{3}{5}) = \frac{1}{10} \)
28) \(6\frac{1}{2} + \frac{5}{12} = 15 \)
29) \(2\frac{1}{3} + \frac{2}{5} = \frac{14}{15} \)
30) \(1 - (\frac{2}{3} + \frac{1}{5}) = \frac{2}{15} \)
1) Factorise and solve the following equations:

a) \(x^2 + 5x + 6 = 0 \)
\((x + 2)(x + 3) = 0 \)
\(x = -2 \) or \(-3 \)

b) \(x^2 + 9x + 20 = 0 \)
\((x + 4)(x + 5) = 0 \)
\(x = -4 \) or \(-5 \)

c) \(x^2 + x - 6 = 0 \)
\((x + 3)(x - 2) = 0 \)
\(x = -3 \) or \(2 \)

d) \(x^2 + 5x - 24 = 0 \)
\((x + 8)(x - 3) = 0 \)
\(x = -8 \) or \(3 \)

e) \(x^2 - 6x + 8 = 0 \)
\((x - 2)(x - 4) = 0 \)
\(x = 2 \) or \(4 \)

f) \(x^2 - 3x - 28 = 0 \)
\((x - 7)(x + 4) = 0 \)
\(x = 7 \) or \(-4 \)

g) \(2x^2 + 7x + 3 = 0 \)
\((x + 3)(2x + 1) = 0 \)
\(x = -3 \) or \(-\frac{1}{2} \)

h) \(6x^2 + 11x + 3 = 0 \)
\((2x + 3)(3x + 1) = 0 \)
\(x = -\frac{3}{2} \) or \(-\frac{1}{3} \)

i) \(3x^2 + 13x - 10 = 0 \)
\((x + 5)(3x - 2) = 0 \)
\(x = -5 \) or \(\frac{2}{3} \)

j) \(3x^2 - 34x + 63 = 0 \)
\((3x - 7)(x - 9) = 0 \)
\(x = \frac{7}{3} \) or \(9 \)

2) Lucy said that -1 is the only solution of \(x \) that satisfies the equation
\(x^2 + 2x + 1 = 0 \)

Was Lucy correct? Yes

Show working to justify your answer
\(x^2 + 2x + 1 = 0 \)
\((x + 1)(x + 1) = 0 \)
so \(x = -1 \)

3) Ben said that -5 is the only solution of \(x \) that satisfies the equation
\(x^2 + 10x + 25 = 0 \)

Was Ben correct? Yes

Show working to justify your answer
\(x^2 + 10x + 25 = 0 \)
\((x + 5)(x + 5) = 0 \)
so \(x = -5 \)
1) Factorise
 a) $x^2 - 16 = (x - 4)(x + 4)$
 b) $a^2 - b^2 = (a - b)(a + b)$
 c) $y^2 - 9 = (y - 3)(y + 3)$
 d) $x^2 - 1 = (x - 1)(x + 1)$
 e) $x^2 - \frac{1}{4} = (x - \frac{1}{2})(x + \frac{1}{2})$
 f) $x^2 - \frac{1}{9} = (x - \frac{1}{3})(x + \frac{1}{3})$

2) Factorise
 a) $x^2 - 4y^2 = (x - 2y)(x + 2y)$
 b) $9a^2 - b^2 = (3a - b)(3a + b)$
 c) $9x^2 - 16y^2 = (3x - 4y)(3x + 4y)$
 d) $\frac{1}{4}x^2 - y^2 = (\frac{1}{2}x - y)(\frac{1}{2}x + y)$
 e) $4x^2 - 25y^2 = (2x - 5y)(2x + 5y)$
 f) $x^2 - \frac{1}{9}y^2 = (x - \frac{1}{3}y)(x + \frac{1}{3}y)$

3) Simplify
 a) $\frac{y^2 - 4}{y + 2} \times \frac{5}{y + 5} = \frac{5(y - 2)}{y + 5}$
 b) $\frac{3}{2x + 1} \times \frac{4x^2 - 1}{x - 2} = \frac{3 (2x - 1)}{x - 2}$
 c) $\frac{12x^2 + 8x}{9x^2 - 4} = \frac{4x}{3x - 2}$
 d) $\frac{25a^2 - 16b^2}{10ab - 8b^2} = \frac{5a + 4b}{2b}$

4) Solve
 a) $4x^2 - 16 = 0 \Rightarrow (2x - 4)(2x + 4) = 0 \Rightarrow x = 2, x = -2$
 b) $25x^2 = 1 \Rightarrow (5x - 1)(5x + 1) = 0 \Rightarrow x = \frac{1}{5}, x = -\frac{1}{5}$
 c) $49x^2 = 121 \Rightarrow (7x - 11)(7x + 11) = 0 \Rightarrow x = \frac{11}{7}, x = -\frac{11}{7}$
 d) $9x^2 - 9 = 7 \Rightarrow (3x - 4)(3x + 4) = 0 \Rightarrow x = \frac{1}{3}, x = -\frac{1}{3}$
Simultaneous Linear Equations

1) Solve
 \[4x + 3y = 6\]
 \[5x - 3y = 21\]
 \[x = 3\] and \[y = -2\]

2) Solve
 \[4x + 3y = 19\]
 \[3x - 5y = 7\]
 \[x = 4\] and \[y = 1\]

3) Solve
 \[3x + 5y = 13\]
 \[2x + 3y = 8\]
 \[x = 1\] and \[y = 2\]

4) Solve
 \[x + 4y = 5\]
 \[4x - 2y = 11\]
 \[x = 3\] and \[y = 0.5\]

5) Solve
 \[2a + b = 3\]
 \[4a - 5b = 20\]
 \[a = 2.5\] and \[b = -2\]

6) Solve
 \[5x + 3y = 4\]
 \[3x + 4y = 9\]
 \[x = -1\] and \[y = 3\]

7) Solve
 \[6x - 2y = 13\]
 \[2x + 3y = -3\]
 \[x = 1.5\] and \[y = -2\]

8) Solve
 \[3a - 2b = 14\]
 \[4a + 3b = 13\]
 \[a = 4\] and \[b = -1\]

9) Solve
 \[5x + 4y = 5\]
 \[2x + 7y = 29\]
 \[x = -3\] and \[y = 5\]

10) Solve
 \[6x - 4y = 39\]
 \[2x + y = 6\]
 \[x = 4.5\] and \[y = -3\]
1) a) Find the equation of line A. \(y = 3x - 2 \)
b) Draw the line B, with equation \(y = x - 1 \).
c) Draw the line C, with equation \(y = 1 - 2x \).

2) A straight line passes through points (0, 4) and (3, 13). What is its equation? \(y = 3x + 4 \)

3) A straight line passes through points (0, 7) and (2, -1). What is its equation? \(y = -4x + 7 \)

4) A straight line is parallel to \(y = 3x - 2 \) and goes through (1, 8). What is its equation? \(y = 3x + 5 \)

5) A straight line is parallel to \(y = 2x + 5 \) and goes through (5, 6). What is its equation? \(y = 2x - 4 \)

6) A is the point (-1, 2).
 B is the point (1, 6).
 C is the point (0, -1).
 Find the equation of the line which passes through C and is parallel to AB. \(y = 2x - 1 \)
1) On the grid below, draw straight lines and use shading to show the region \(R \) that satisfies the inequalities \(x \geq 1 \quad y \geq x \quad x + y \leq 7 \)

2) On the grid below, draw straight lines and use shading to show the region \(R \) that satisfies the inequalities \(y \geq x + 1 \quad y \leq 5 \quad x \geq 1 \)
1) a) Complete this table of values for
\[y = x^3 + x - 4 \]

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-14</td>
<td>-6</td>
<td>-4</td>
<td>-2</td>
<td>6</td>
</tr>
</tbody>
</table>

b) On the grid, draw the graph of
\[y = x^3 + x - 4 \]

c) Use the graph to find the value of \(x \) when \(y = 2 \)
\[x = 1.75 \]

2) a) Complete this table of values for
\[y = x^3 + 2x \]

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-12</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

b) On the grid, draw the graph of
\[y = x^3 + 2x \]

c) Use the graph to find the value of \(x \) when \(y = -6 \)
\[x = -1.5 \]

3) Sketch the graph of
\[y = 1 + \frac{1}{x} \]
in your book.
Recognise the Shapes of Functions

Match each of the functions below, with the correct sketch of its graph.

\[
\begin{align*}
 y &= 3x^3 \\
 y &= \frac{-2}{x} \\
 y &= 3x - 1 \\
 y &= 2^x \\
 y &= 2x^2 + 1 \\
 y &= \frac{2}{x} \\
 y &= 5x - x^3 \\
 y &= -2x^3 \\
 y &= 3x^2 \\
 y &= -2x^3 \\
 y &= \frac{-2}{x} \\
 y &= 3x - 1
\end{align*}
\]
1) PQR is a right-angled triangle.
PR = 11 cm.
QR = 4.5 cm
Angle PRQ = 90°

Work out the value of x. 22.2°
Give your answer correct to 1 decimal place.

2) AC = 14 cm.
Angle ABC = 90°
Angle ACB = 34°

Calculate the length of BC. 11.6 cm
Give your answer correct to 3 significant figures.

3) PQR is a right-angled triangle.
PQ = 18 cm.
QR = 8.4 cm
Angle PRQ = 90°

Work out the value of x. 27.8°
Give your answer correct to 1 decimal place.

4) AB = 23 cm.
Angle ABC = 90°
Angle ACB = 21°

Calculate the length of AC. 64.2 cm
Give your answer correct to 3 significant figures.

5) A lighthouse, L, is 3.4 km due West of a port, P.
A ship, S, is 1.8 km due North of the lighthouse, L.

Calculate the size of the angle marked x. 27.9°
Give your answer correct to 3 significant figures.
1)

Appleby, Brompton and Crowdace are three towns.
Appleby is 9.8 km due west of Brompton.
Brompton is 7.6 km due south of Crowdace.

a) Calculate the bearing of Crowdace from Appleby.
 Give your answer correct to 1 decimal place. **052.2°**

b) Calculate the bearing of Appleby from Crowdace.
 Give your answer correct to 1 decimal place. **232.2°**

2)

Denton, Egleby and Froncham are three towns.
Egleby is 12.3 km due East of Denton.
Froncham is due north of Denton and on a bearing of 320° from Egleby.

Calculate the distance between Froncham and Egleby.
Give your answer correct to 1 decimal place. **19.1 km**
1) A cuboid lies on the coordinate axes.

The point Q has coordinates (5, 3, 4)

a) Write down the coordinates of the point P \((5, 3, 0)\)
b) Write down the coordinates of the point T \((5, 0, 0)\)
c) Write down the coordinates of the point S \((5, 0, 4)\)
d) Write down the coordinates of the point R \((0, 0, 4)\)
e) Write down the coordinates of the point U \((0, 3, 0)\)

2) A cuboid lies on the coordinate axes.

Point P lies half way between A and B and has coordinates (3, 4, 5)

a) Write down the coordinates of B. \((6, 4, 5)\)
b) Write down the coordinates of C. \((6, 4, 0)\)
1) BE is parallel to CD.
AB = 12 cm, BC = 3 cm, CD = 7 cm, AE = 8 cm.
 a) Calculate the length of ED. 2 cm
 b) Calculate the length of BE. 5.6 cm

2) Two prisms, A and B, are mathematically similar.
The volume of prism A is 36000 cm³.
The volume of prism B is 383328 cm³.
The total surface area of prism B is 40656 cm².
Calculate the total surface area of prism A. 8400 cm²

3) P and Q are two geometrically similar solid shapes.
The total surface area of shape P is 540 cm².
The total surface area of shape Q is 960 cm².
The volume of shape P is 2700 cm³.
Calculate the volume of shape Q. 6400 cm³
1) In the diagram, A, B and C are points on the circumference of a circle, centre O. PA and PB are tangents to the circle. Angle ACB = 72°.

 a) (i) Work out the size of angle AOB. \[\text{Angle at centre is twice angle on circumference.} \]

 (ii) Give a reason for your answer.

 b) Work out the size of angle APB. \[36° \]

2) P, Q, R and S are points on the circle. PQ is a diameter of the circle. Angle RPQ = 32°.

 a) (i) Work out the size of angle PQR. \[58° \]

 (ii) Give reasons for your answer.

 b) (i) Work out the size of angle PSR. \[122° \]

 (ii) Give a reason for your answer.

3) The diagram shows a circle, centre O. AC is a diameter. Angle BAC = 31°. D is a point on AC such that angle BDA is a right angle.

 a) Work out the size of angle BCA. \[59° \]

 Give reasons for your answer.

 b) Calculate the size of angle DBC. \[31° \]

 c) Calculate the size of angle BOA. \[118° \]

4) A, B, C and D are four points on the circumference of a circle. ABE and DCE are straight lines. Angle BAC = 21°. Angle EBC = 58°.

 a) Find the size of angle ADC. \[58° \]

 b) Find the size of angle ADB. \[37° \]

 Angle CAD = 69°.

 c) Is BD a diameter of the circle? \[\text{Yes} \]

 You must explain your answer.

 Angle DAB = 69° + 21° = 90°

 BD subtends 90° on the circumference. Therefore BD is a diameter.
Circle Theorems

1) \(a = 44\degree \)

2) \(b = 23\degree \)

3) \(c = 92\degree \)

4) \(d = 23\degree \)

5) \(e = 39\degree \), \(f = 56\degree \)

6) \(g = 82\degree \)

7) \(h = 90\degree \)

8) \(i = 90\degree \)

9) \(j = 36\degree \), \(k = 54\degree \)

10) \(l = 50\degree \), \(m = 40\degree \)

11) \(n = 36\degree \), \(p = 72\degree \), \(q = 6\degree \)

12) \(r = 60\degree \), \(s = 54\degree \)
1) \(a = 71° \) \(b = 92° \)

2) \(c = 60° \) \(d = 67° \)

3) \(e = 98° \) \(f = 55° \)

4) \(g = 100° \) \(h = 85° \)

5) \(i = 39° \)

6) \(j = 136° \)

7) \(k = 56° \) \(l = 68° \) \(m = 45° \)

8) \(n = 19° \) \(p = 50° \) \(q = 50° \)

9) \(r = 23° \) \(s = 93° \)

10) \(t = 42° \)

11) \(u = 5° \)

12) \(v = 70° \) \(w = 20° \)
Circle Theorems

1) \(a = 64^\circ \)

2) \(b = 51^\circ \) \(c = 66^\circ \)

3) \(d = 92^\circ \) \(e = 28^\circ \)

4) \(f = 78^\circ \) \(g = 24^\circ \)

5) \(h = 50^\circ \) \(i = 65^\circ \)

6) \(j = 100^\circ \) \(k = 40^\circ \) \(l = 40^\circ \) \(m = 100^\circ \)

7) \(n = 81^\circ \)

8) \(p = 52^\circ \) \(q = 38^\circ \)

9) \(r = 50^\circ \) \(s = 70^\circ \) \(t = 20^\circ \)

10) \(u = 18^\circ \) \(v = 81^\circ \) \(w = 18^\circ \)

11) \(x = 68^\circ \) \(y = 22^\circ \) \(z = 56^\circ \)
The heights of 80 plants were measured and can be seen in the table, below.

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < h ≤ 10</td>
<td>2</td>
</tr>
<tr>
<td>10 < h ≤ 20</td>
<td>5</td>
</tr>
<tr>
<td>20 < h ≤ 30</td>
<td>19</td>
</tr>
<tr>
<td>30 < h ≤ 40</td>
<td>38</td>
</tr>
<tr>
<td>40 < h ≤ 50</td>
<td>13</td>
</tr>
<tr>
<td>50 < h ≤ 60</td>
<td>3</td>
</tr>
</tbody>
</table>

b) Draw a cumulative frequency graph for your table.

c) Use your graph to find an estimate for
 (i) the median height of a plant. 34 cm
 (ii) the interquartile range of the heights of the plants. 39 - 27.7 = 11.3 cm

d) Use your graph to estimate how many plants had a height that was greater than 45cm. 80 - 72 = 8 plants
Box Plots

1) The ages of 20 teachers are listed below.

22, 22, 24, 25, 27, 27, 28, 29, 29, 29, 34, 35, 41, 43, 44, 49, 55, 57, 58, 58

a) On the grid below, draw a boxplot to show the information about the teachers.

b) What is the interquartile range of the ages of the teachers? 19.5 years

2) A warehouse has 60 employees working in it.

The age of the youngest employee is 16 years.
The age of the oldest employee is 55 years.

The median age is 37 years.
The lower quartile age is 29 years.
The upper quartile age is 43 years.

On the grid below, draw a boxplot to show information about the ages of the employees.
1) Lucy throws a biased dice twice.
 Complete the probability tree diagram to show the outcomes.
 Label clearly the branches of the tree diagram.

 ![Probability Tree Diagram](image)

2) A bag contains 10 coloured balls.
 7 of the balls are blue and 3 of the balls are green.
 Nathan is going to take a ball, replace it, and then take a second ball.
 a) Complete the tree diagram.

 ![Tree Diagram for Balls](image)

 b) Work out the probability that Nathan will take two blue balls.
 \[
 \frac{49}{100} = \frac{7}{10} \times \frac{7}{10}
 \]

c) Work out the probability that Nathan will take one of each coloured balls.
 \[
 \frac{42}{100} = \frac{21}{100} + \frac{21}{100}
 \]

d) Work out the probability that Nathan will take two balls of the same colour.
 \[
 \frac{58}{100} = \frac{49}{100} + \frac{9}{100}
 \]
1) A bag contains 7 green and 3 yellow balls.
A ball is taken from the bag at random and replaced.
Another ball is taken from the bag at random.
 a) Draw a tree diagram to show all the possibilities.
 b) What is the probability that both balls are different colours?
 \[
 \frac{42}{100}
 \]

2) A bag contains 7 green and 3 yellow balls.
A ball is taken from the bag at random and **not replaced**.
Another ball is taken from the bag at random.
 a) Draw a tree diagram to show all the possibilities.
 b) What is the probability that both balls are different colours?
 \[
 \frac{42}{90}
 \]

3) A box contains 5 red counters and 3 blue counters.
A counter is taken from the box at random and not replaced.
Another counter is taken at random.
 a) Draw a tree diagram to show all the possibilities.
 b) What is the probability of choosing at least one blue counter?
 \[
 \frac{36}{56}
 \]
 c) What is the probability of choosing two counters of the same colour?
 \[
 \frac{26}{56}
 \]
 d) What is the probability of choosing two counters of different colours?
 \[
 \frac{30}{56}
 \]

4*) A box contains 4 red counters and 3 blue counters.
A counter is taken from the box at random and not replaced.
A second counter is taken from the box at random and not replaced.
A third counter is taken from the box.
 a) Draw a tree diagram to show all the possibilities.
 b) What is the probability that all three counters are the same colour?
 \[
 \frac{108}{210}
 \]
 c) What is the probability that exactly two of the counters are red?
 \[
 \frac{30}{210}
 \]
Recurring Decimals

1) a) Convert the recurring decimal 0.3\(\ldots\) to a fraction in its simplest form. \(\frac{4}{11}\) \(\text{and} \ 100x = 36.3636\ldots\)

\[0.3\overline{6} = \frac{4}{11}\]

b) Prove that the recurring decimal \(0.\overline{72} = \frac{8}{11}\)

\[0.\overline{72} = 2 \times 0.\overline{36} = \frac{2 \times 4}{11} = \frac{8}{11}\]

2) a) Change \(\frac{4}{9}\) to a decimal. \(0.\overline{4}\)

\[9 \mid 4.00\]

b) Prove that the recurring decimal \(0.\overline{57} = \frac{19}{33}\)

\[x = 0.\overline{5757...} \quad x = \frac{57}{99} = \frac{19}{33}\]

3) a) Change \(\frac{3}{11}\) to a decimal. \(0.\overline{27}\)

b) Prove that the recurring decimal \(0.\overline{45} = \frac{15}{33}\)

\[x = 0.\overline{4545...} \quad x = \frac{45}{99} = \frac{15}{33}\]

4) a) Change \(\frac{1}{6}\) to a decimal. \(0.\overline{16}\)

\[6 \mid 1.000\]

b) Prove that the recurring decimal \(0.\overline{135} = \frac{5}{37}\)

\[x = 0.\overline{135135...} \quad x = \frac{135}{999} = \frac{5}{37}\]

5) a) Convert the recurring decimal \(0.\overline{261}\) to a fraction in its simplest form. \(\frac{29}{111}\)

\[x = 0.\overline{261} = \frac{261}{999}\]

b) Prove that the recurring decimal \(0.\overline{27} = \frac{5}{18}\)

\[100x = 27.\overline{777...} \quad 99x = 27.5 \quad x = \frac{27.5}{99} = \frac{55}{198} = \frac{5}{18}\]

6) a) Convert the recurring decimal \(5.\overline{2}\) to a fraction in its simplest form. \(x = 5.\overline{222}\)

\[10x = 52.\overline{222...}\]

b) Prove that the recurring decimal \(0.\overline{136} = \frac{3}{22}\)

\[9x = 47 \quad x = \frac{47}{9} = \frac{5\frac{2}{9}}{1}\]
Fractional and Negative Indices

\[
\begin{align*}
a^x \times a^y &= a^{x+y} \\
\frac{a^x}{a^y} &= a^{x-y} \\
(a^x)^y &= a^{xy} \\
a^0 &= 1 \\
a^{-x} &= \frac{1}{a^x} \\
a^{\frac{x}{y}} &= \sqrt[y]{a^x} \\
a^{\frac{x}{y}} &= \frac{1}{\sqrt[y]{a^x}}
\end{align*}
\]

1) **Simplify**

a) \((p^3)^5\) \(p^{25}\)

b) \(k^3 \times k^2\) \(k^5\)

c) \(x^3 \div x^2\) \(x^3\)

d) \((p^2)^3\) \(p^{-6}\)

e) \((m^{-5})^{-2}\) \(m^{10}\)

f) \((3xy^2)^3\) \(27x^3y^6\)

2) **Without using a calculator, find the exact value of the following.**

a) \(4^0 \times 4^2\) \(16\)

b) \(5^4 \times 5^2\) \(25\)

c) \(7^5 \div 7^3\) \(49\)

d) \(6^7 \div 6^6\) \(6\)

e) \((8^5)^0\) \(1\)

f) \((3^2)^2\) \(64\)

3) **Work out each of these, leaving your answers as exact fractions when needed.**

a) \(4^0 = 1\) \(\frac{1}{16}\)

b) \(7^0 = 1\) \(\frac{1}{8}\)

c) \(25^0 = 1\) \(\frac{1}{125}\)

d) \(139^0 = 1\) \(\frac{1}{100000}\)

e) \(4^{-2}\) \(\frac{1}{16}\)

f) \(8^{-1}\) \(\frac{1}{8}\)

g) \(5^{-3}\) \(\frac{1}{125}\)

h) \(10^{-5}\) \(\frac{1}{100000}\)

i) \(49^{\frac{1}{2}} = 7\)

j) \(32^{\frac{2}{5}} = 4\)

k) \(27^{\frac{1}{3}} = 3\)

l) \(16^{\frac{3}{2}} = 64\)

m) \(49^{\frac{1}{2}} = \frac{1}{7}\)

n) \(32^{\frac{2}{3}} = \frac{1}{4}\)

4) \(5\sqrt{5}\) can be written in the form \(5^n\).

Find the value of \(n\) \(1.5\) \(5^{1} \times 5^{\frac{1}{2}}\)

5) \(2 \times \sqrt{8} = 2^n\)

Find the value of \(m\) \(2.5\) \(2^{1} \times (2^{3})^{\frac{1}{2}}\)

6) **Find the value of \(x\) when**

\(\sqrt{125} = 5^x\) \(1.5\) \(5^{1} \times (5^{3})^{\frac{1}{2}}\)

7) **Find the value of \(y\) when**

\(\sqrt{128} = 2^y\) \(3.5\) \((2^{7})^{\frac{1}{2}}\)

8) \(a = 2^x, b = 2^y\)

a) Express in terms of \(a\) and \(b\)

i) \(2^{x+y} ab\)

ii) \(2^{2x} a^2\)

iii) \(2^{x+2y} ab^2\)

\(ab = 16\) and \(2ab^2 = 16\)

b) **Find the value of \(x\) and the value of \(y\):** \(x = 5, y = -1\)

\(16 = 2^x \times 2^y\)

\(16 = 2(2^x \times 2^y \times 2^y)\)

\(= 2^{x+y}\)

\(8 = 2^x \times 2^y \times 2^y\)

\(x + y = 4\) \(x + 2y = 3\)
\[\sqrt{25} \] is not a surd because it is equal to exactly 5.

\[\sqrt{3} \] is a surd because you can only ever approximate the answer.

We don’t like surds as denominators. When we rationalise the denominator it means that we transfer the surd expression to the numerator.

1) Simplify the following:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\sqrt{7} \times \sqrt{7})</td>
<td>7</td>
</tr>
<tr>
<td>b) (\sqrt{3} \times \sqrt{3})</td>
<td>3</td>
</tr>
<tr>
<td>c) (\sqrt{20})</td>
<td>(2\sqrt{5})</td>
</tr>
<tr>
<td>d) (\sqrt{24})</td>
<td>(2\sqrt{6})</td>
</tr>
<tr>
<td>e) (\sqrt{72})</td>
<td>(6\sqrt{2})</td>
</tr>
<tr>
<td>f) (\sqrt{200})</td>
<td>(10\sqrt{2})</td>
</tr>
<tr>
<td>g) (\sqrt{\frac{2}{25}})</td>
<td>(\frac{\sqrt{2}}{5})</td>
</tr>
</tbody>
</table>

2) Simplify the following:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\sqrt{2} \times \sqrt{18})</td>
<td>6</td>
</tr>
<tr>
<td>b) (\sqrt{8} \times \sqrt{32})</td>
<td>16</td>
</tr>
<tr>
<td>c) (\sqrt{99} \times \sqrt{22})</td>
<td>(33\sqrt{2})</td>
</tr>
<tr>
<td>d) (\sqrt{45} \times \sqrt{20})</td>
<td>30</td>
</tr>
<tr>
<td>e) (\sqrt{18} \times \sqrt{128})</td>
<td>48</td>
</tr>
<tr>
<td>f) (\sqrt{28} \times \sqrt{175})</td>
<td>70</td>
</tr>
</tbody>
</table>

3) Expand and simplify where possible:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\sqrt{3}(3-\sqrt{3}))</td>
<td>(3\sqrt{3} - 3)</td>
</tr>
<tr>
<td>b) (\sqrt{2}(6+2\sqrt{2}))</td>
<td>(6\sqrt{2} + 4)</td>
</tr>
<tr>
<td>c) (\sqrt{7}(2+3\sqrt{7}))</td>
<td>(2\sqrt{7} + 21)</td>
</tr>
<tr>
<td>d) (\sqrt{2}(\sqrt{32} - \sqrt{8}))</td>
<td>4</td>
</tr>
</tbody>
</table>

4) Expand and simplify where possible:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) ((1 + \sqrt{2})(1 - \sqrt{2}))</td>
<td>-1</td>
</tr>
<tr>
<td>b) ((3 + \sqrt{5})(2 - \sqrt{5}))</td>
<td>(1 - \sqrt{5})</td>
</tr>
<tr>
<td>c) ((\sqrt{3} + 2)(\sqrt{3} + 4))</td>
<td>(11 + 6\sqrt{3})</td>
</tr>
<tr>
<td>d) ((\sqrt{5} - 3)(\sqrt{5} + 1))</td>
<td>(2 - 2\sqrt{5})</td>
</tr>
<tr>
<td>e) ((2 + \sqrt{7})(2 - \sqrt{7}))</td>
<td>-3</td>
</tr>
<tr>
<td>f) ((\sqrt{6} - 3)^2)</td>
<td>(15 - 6\sqrt{6})</td>
</tr>
</tbody>
</table>

5) Rationalise the denominator, simplifying where possible:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\frac{3}{\sqrt{2}})</td>
<td>(\frac{3\sqrt{2}}{2})</td>
</tr>
<tr>
<td>b) (\frac{2}{\sqrt{5}})</td>
<td>(\frac{\sqrt{2}}{2})</td>
</tr>
<tr>
<td>c) (\frac{3\sqrt{2}}{\sqrt{7}})</td>
<td>(\frac{3\sqrt{14}}{7})</td>
</tr>
<tr>
<td>d) (\frac{\sqrt{5}}{\sqrt{10}})</td>
<td>(\frac{\sqrt{2}}{2})</td>
</tr>
<tr>
<td>e) (\frac{1}{4\sqrt{8}})</td>
<td>(\frac{\sqrt{2}}{16})</td>
</tr>
<tr>
<td>f) (\frac{\sqrt{15}}{\sqrt{3}})</td>
<td>(\sqrt{5})</td>
</tr>
</tbody>
</table>

6) \(3 \times \sqrt{27} = 3^n \) \(2\frac{1}{2} \)

Find the value of \(n \)

7) Express \(\sqrt{8} \) in \(16\sqrt{2} \)

the form \(m\sqrt{2} \) where \(m \) is an integer.

8) Rationalise the denominator of \(\frac{1}{8\sqrt{8}} \) giving the answer in the form \(\frac{\sqrt{2}}{p} \) \(\frac{\sqrt{2}}{32} \)

9) Work out the following, giving your answer in its simplest form:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\frac{(5 + \sqrt{3})(5 - \sqrt{3})}{\sqrt{22}})</td>
<td>(\frac{\sqrt{22}}{})</td>
</tr>
<tr>
<td>b) (\frac{(4 - \sqrt{5})(4 + \sqrt{5})}{\sqrt{11}})</td>
<td>(\frac{\sqrt{11}}{})</td>
</tr>
<tr>
<td>c) (\frac{(3 - \sqrt{2})(3 + \sqrt{2})}{\sqrt{14}})</td>
<td>(\frac{\sqrt{14}}{2})</td>
</tr>
<tr>
<td>d) (\frac{(\sqrt{5} + 1)^2}{\sqrt{3}})</td>
<td>(\frac{4\sqrt{3} + 6}{3})</td>
</tr>
<tr>
<td>e) (\frac{(5 + \sqrt{3})^2}{\sqrt{20}})</td>
<td>(\frac{7\sqrt{5} + 15}{5})</td>
</tr>
<tr>
<td>f) (\frac{(5 - \sqrt{5})(2 + 2\sqrt{5})}{\sqrt{20}})</td>
<td>4</td>
</tr>
</tbody>
</table>
1) \(x \) is directly proportional to \(y \).
When \(x = 21 \), then \(y = 3 \).
\(x = k \cdot y \)
\(21 = k \times 3 \)
\(k = 7 \)

a) Express \(x \) in terms of \(y \).
\(x = 7y \)

b) Find the value of \(x \) when \(y \) is equal to:
(i) 1 \(\quad \) (ii) 2 \(\quad \) (iii) 10 \(\quad \) 70

2) \(a \) is inversely proportional to \(b \).
When \(a = 12 \), then \(b = 4 \).
\(a = \frac{k}{b} \)
\(12 = \frac{k}{4} \)
\(k = 48 \)

a) Find a formula for \(a \) in terms of \(b \).
\(a = \frac{48}{b} \)

b) Find the value of \(a \) when \(b \) is equal to:
(i) 1 \(\quad \) (ii) 8 \(\quad \) (iii) 10 \(\quad \) 4.8

b) Find the value of \(b \) when \(a \) is equal to:
(i) 4 \(\quad \) (ii) 24 \(\quad \) (iii) 3.2 \(\quad \) 15

3) The variables \(u \) and \(v \) are in inverse proportion to one another.
When \(u = 3 \), then \(v = 8 \).
\(u = \frac{k}{v} \)
\(3 = \frac{k}{8} \)
\(k = 24 \)

Find the value of \(u \) when \(v = 12 \).
\(u = \frac{24}{12} \)

4) \(p \) is directly proportional to the square of \(q \).
\(p = 75 \) when \(q = 5 \)
\(p = k \cdot q^2 \)
\(75 = k \times 5^2 \)
\(75 = k \times 25 \)
\(k = 3 \)

a) Express \(p \) in terms of \(q \).
\(p = 3q^2 \)

b) Work out the value of \(p \) when \(q = 7 \).
\(p = 147 \)
\(p = 3 \times 7^2 \)
\(p = 3 \times 49 \)

b) Work out the positive value of \(q \) when \(p = 27 \).
\(q = 3 \)

5) \(y \) is directly proportional to \(x^2 \).
When \(x = 3 \), then \(y = 36 \).
\(y = 4x^2 \)

a) Express \(y \) in terms of \(x \).

z is inversely proportional to \(x \).
When \(x = 4 \), \(z = 2 \).

b) Show that \(z = c \cdot y^n \), where \(c \) and \(n \) are numbers and \(c > 0 \).
You must find the values of \(c \) and \(n \).
\(z = 16y^{0.5} \)
\(c = 16 \)
\(n = -0.5 \)
Upper and Lower Bounds

1) A = 11.3 correct to 1 decimal place
 B = 300 correct to 1 significant figure
 C = 9 correct to the nearest integer

 a) Calculate the upper bound for A + B. 361.35
 \[11.35 + 350 = 361.35\]
 b) Calculate the lower bound for B ÷ C. 26.3 (1 dp)
 \[250 \div 9.5 = 26.3 (1 \text{ dp})\]
 c) Calculate the least possible value of AC. 95.625
 \[11.25 \times 8.5 = 95.625\]
 d) Calculate the greatest possible value of \(\frac{A + B}{B + C}\) 1.4 (1 dp)
 \[\frac{11.35 + 350}{250 + 8.5} = 1.4 (1 \text{ dp})\]

2) An estimate of the acceleration due to gravity can be found using the formula:
 \[g = \frac{2L}{T^2 \sin x}\]

 Using
 \[T = 1.2 \text{ correct to 1 decimal place}\]
 \[L = 4.50 \text{ correct to 2 decimal places}\]
 \[x = 40 \text{ correct to the nearest integer}\]

 a) Calculate the lower bound for the value of \(g\).
 Give your answer correct to 3 decimal places.
 \[8.859\]
 \[\frac{2 \times 4.495}{1.25^2 \times \sin 40.5} = 8.859\]
 b) Calculate the upper bound for the value of \(g\).
 Give your answer correct to 3 decimal places.
 \[10.711\]
 \[\frac{2 \times 4.505}{1.15^2 \times \sin 39.5} = 10.711\]

3) The diagram shows a triangle \(ABC\).

 \(AB = 73\text{mm correct to 2 significant figures.}\)
 \(BC = 80\text{mm correct to 1 significant figure.}\)

 (a) Write the upper and lower bounds of both \(AB\) and \(BC\).

 \(AB_{\text{upper}} = 73.5\)
 \(AB_{\text{lower}} = 72.5\)
 \(BC_{\text{upper}} = 85\)
 \(BC_{\text{lower}} = 75\)

 (b) Calculate the upper bound for the area of the triangle \(ABC\).

 \[\frac{73.5 \times 85}{2} = 3123.75\]
 \[\frac{3123.75}{2} = 3123.75\]
 Angle \(CAB = x^\circ\)

 (c) Calculate the lower bound for the value of \(\tan x^\circ\) 1.02 (2 dp)

 \[\tan x = \frac{O}{A} = \frac{BC}{AB} = \frac{75}{73.5} = 1.02 (2 \text{ dp})\]
Solve Quadratics Using the Formula

\[ax^2 + bx + c = 0 \]

\[x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

1) Solve the equation \(x^2 + 4x + 1 = 0 \)
 - Give your answers correct to 3 decimal places.
 - \(x = -0.268 \) or \(x = -3.732 \)

2) Solve the equation \(x^2 + 8x + 6 = 0 \)
 - Give your answers correct to 3 significant figures.
 - \(x = -0.838 \) or \(x = -7.16 \)

3) Solve the equation \(x^2 - 3x - 2 = 0 \)
 - Give your answers correct to 3 significant figures.
 - \(x = -0.562 \) or \(x = 3.56 \)

4) Solve the equation \(x^2 - 7x + 2 = 0 \)
 - Give your answers correct to 3 significant figures.
 - \(x = 0.298 \) or \(x = 6.70 \)

5) Solve the equation \(2x^2 + 6x - 1 = 0 \)
 - Give your answers correct to 3 significant figures.
 - \(x = -3.16 \) or \(x = 0.158 \)

6) Solve the equation \(3x^2 - 2x - 20 = 0 \)
 - Give your answers correct to 3 significant figures.
 - \(x = -2.27 \) or \(x = 2.94 \)

7) Solve the equation \(x^2 - 14x - 161.25 = 0 \)
 - \(x = -7.5 \) or \(x = 21.5 \)

8) Solve the equation \(17x^2 - 92x - 206 = 0 \)
 - Give your answers correct to 3 significant figures.
 - \(x = -1.70 \) or \(x = 7.11 \)

9) \(x^2 + 10x = 300 \)
 - \(x^2 + 10x - 300 = 0 \)
 - Find the positive value of \(x \).
 - Give your answer correct to 3 significant figures.
 - \(x = 13.0 \)

10) \((x + 2)(x - 3) = 1 \)
 a) Show that \(x^2 - x - 7 = 0 \)
 - \(x^2 - 3x + 2x - 6 = 1 \)
 - \(x^2 - x - 6 = 1 \)
 - \(x^2 - x - 7 = 0 \)
 b) Solve the equation \(x^2 - x - 7 = 0 \)
 - Give your answers correct to 3 significant figures.
 - \(x = -2.19 \) or \(x = 3.19 \)
1) Show that if \(y = x^2 + 8x - 3 \) then \(y \geq -19 \) for all values of \(x \).

2) Show that if \(y = x^2 - 10x + 30 \) then \(y \geq 5 \) for all values of \(x \).

3) The expression \(x^2 + 4x + 10 \) can be written in the form \((x + p)^2 + q\) for all values of \(x \).
 Find the values of \(p \) and \(q \).
 \[(x + 2)^2 - 4 + 10 \]
 \[(x + 2)^2 + 6 \]
 \(p = 2 \) and \(q = 6 \)

4) Given that \(x^2 - 6x + 17 = (x - p)^2 + q \) for all values of \(x \), find the value of \(p \) and the value of \(q \).
 \[(x - 3)^2 - 9 + 17 \]
 \[(x - 3)^2 + 8 \]
 \(p = 3 \) and \(q = 8 \)

5) For all values of \(x \),
 \[x^2 + 6x = (x + p)^2 + q \]
 \(p = 3 \) and \(q = -9 \)
 a) Find the values of \(p \) and \(q \).
 b) Find the minimum value of \(x^2 + 6x \). -9

6) For all values of \(x \),
 \[x^2 - 8x - 5 = (x - p)^2 + q \]
 a) Find the value of \(p \) and the value of \(q \).
 \[(x - 4)^2 - 16 - 5 \]
 \[(x - 4)^2 - 21 \]
 \(p = 4 \) and \(q = -21 \)
 b) On the axes, sketch the graph of \(y = x^2 - 8x - 5 \).
 c) Find the coordinate of the minimum point on the graph of \(y = x^2 - 8x - 5 \).
 (4, -21)

7) The expression \(10x - x^2 \) can be written in the form \(p - (x - q)^2 \) for all values of \(x \).
 a) Find the values of \(p \) and \(q \).
 \(p = 25 \) and \(q = 5 \)
 b) The expression \(10x - x^2 \) has a maximum value.
 (i) Find the maximum value of \(10x - x^2 \).
 25
 (ii) State the value of \(x \) for which this maximum value occurs.
 \(x = 5 \)

\[10x - x^2 \text{ can be rearranged as} \]
\[-x^2 + 10x \]
\[-(x^2 - 10x) \]
\[-[(x - 5)^2 - 25] \]
\[-(x - 5)^2 + 25 \text{ rearranged as} \]
\[25 - (x - 5)^2 \]
1) Simplify fully
 a) \(\frac{9x^2}{21x^3} \cdot \frac{3}{7x} \)
 b) \(\frac{10xy^3}{5y^2} \cdot 2xy \)
 c) \(\frac{18a^3b^2}{2ab^2} \cdot 9a^2 \)
 d) \(\frac{4x^2 + 12x}{10x} \cdot \frac{2(x + 3)}{5} \)
 e) \(\frac{2a^2b - 14a^2b^3}{6a^3b^3} \cdot \frac{1 - 7b^2}{3ab^2} \)
 f) \(\frac{5x^2y + 5xy^2}{10x^2y^2} \cdot \frac{x + y}{2xy} \)

2) Simplify fully
 a) \(\frac{x^2 + x}{x^2 + 6x + 5} \cdot \frac{x}{x + 5} \)
 b) \(\frac{x^2 - 6x + 8}{2x^2 - 8x} \cdot \frac{x - 2}{2x} \)
 c) \(\frac{x^2 - 3x}{x^2 + x - 12} \cdot \frac{x}{x + 4} \)
 d) \(\frac{x^2 + 7x + 10}{x^2 + 5x} \cdot \frac{x + 2}{x} \)

3) a) Factorise \(4x^2 - 12x + 9 \) \((2x - 3)^2\)
 b) Simplify \(\frac{6x^2 - 7x - 3}{4x^2 - 12x + 9} \cdot \frac{3x + 1}{2x - 3}\)

4) Write as single fractions in their simplest form
 a) \(\frac{3}{x} + \frac{3}{2x} \cdot \frac{9}{2x} \)
 b) \(\frac{5}{3x} - \frac{3}{4x} \cdot \frac{11}{12x} \)
 c) \(\frac{x + 2}{5} + \frac{x - 1}{2} \cdot \frac{7x - 1}{10} \)
 d) \(\frac{3}{x + 2} - \frac{5}{2x + 1} \cdot \frac{x - 7}{(x + 2)(2x + 1)} \)

5) a) Factorise \(2x^2 + 7x + 6 \) \((x + 2)(2x + 3)\)
 b) Write as a single fraction in its simplest form \(\frac{3}{x + 2} + \frac{4x}{2x^2 + 7x + 6} \cdot \frac{10x + 9}{(x + 2)(2x + 3)} \)

6) Solve
 a) \(\frac{1}{x} + \frac{1}{3x} = 2 \cdot x = \frac{2}{3} \)
 b) \(\frac{1}{x - 2} + \frac{3}{x + 6} = \frac{1}{2} \cdot x = -2 \text{ or } 6 \)
 c) \(\frac{1}{x - 5} + \frac{6}{x} = 2 \cdot x = 2.5 \text{ or } 6 \)
 d) \(\frac{1}{x + 2} + \frac{1}{x - 1} = 4 \cdot x = -0.5 \text{ or } 1.5 \)
 e) \(\frac{3}{x + 2} + \frac{1}{x - 2} = \frac{7}{x^2 - 4} \cdot x = 2.75 \)
 f) \(\frac{x}{2x - 1} + \frac{2}{x + 2} = 1 \cdot x = 0 \text{ or } 3 \)
1) Make \(c \) the subject of the formula.
\[
v = 2a + 3b + c \quad c = v - 2a - 3b
\]

2) Make \(t \) the subject of the formula.
\[
A = \pi t + 5t \quad t = \frac{A}{\pi + 5} \\
A = t(\pi + 5)
\]

3) Make \(s \) the subject of the formula.
\[
R = 3s + \pi s + 2t \quad s = \frac{R - 2t}{3 + \pi} \\
R = 2t = s(3 + \pi)
\]

4) \(k = \frac{l}{m-l} \)
\[
k(m - l) = l \\
k^m - kl = l
\]
a) Make \(l \) the subject of the formula. \(l = \frac{km}{1 + k} \) \(km = l + kl \)
b) Make \(m \) the subject of the formula. \(m = \frac{l + kl}{k} \) \(km = l(1 + k) \)

5) \(A = \frac{k(x + 5)}{3} \)
Make \(x \) the subject of the formula. \(x = \frac{3A - 5k}{k} \) \(3A - 5k = kx \)

6) \(R = \frac{u + v^2}{u + v} \)
\[
R(u + v) = u + v^2 \\
Ru + Rv = u + v^2 \\
Ru - u = v^2 - Rv \\
\]
Make \(u \) the subject of the formula. \(u = \frac{v^2 - Rv}{R - 1} \) \(u(R - 1) = v^2 - Rv \)

7) \(\frac{3x + 2}{5} = \frac{y}{10 + y} \)
\[
(3x + 2)(10 + y) = 5y \\
30x + 3xy + 20 + 2y = 5y \\
30x + 20 = 5y - 3xy - 2y \\
30x + 20 = 3y - 3xy \\
30x + 20 = y(3 - 3x)
\]
Make \(y \) the subject of the formula. \(y = \frac{30x + 20}{3 - 3x} \) \(30x + 20 = y(3 - 3x) \)

8) \(\sqrt{\frac{a-3}{5}} = 4b \)
Rearrange this formula to give \(a \) in terms of \(b. \) \(a = \frac{3}{5} = 16b^2 \)
\[
\frac{a - 3}{5} = 16b^2 \\
a - 3 = 80b^2
\]

9) \(S = 2\pi d\sqrt{h^2 + d^2} \)
Rearrange this formula to make \(h \) the subject. \(h = \sqrt{\frac{S^2}{4\pi d^2} - d^2} \)
\[
\frac{S^2}{2\pi d} = h^2 + d^2 \\
\frac{S^2}{4\pi^2 d^2} = h^2 + d^2
\]

\[
\frac{S^2}{4\pi^2 d^2} - d^2 = h^2
\]
1) Solve these simultaneous equations.

\[
\begin{align*}
y &= x \\
y &= x^2 - 6 \\
x &= 3 \quad \text{and} \quad y = 3 \\
x &= -2 \quad \text{and} \quad y = -2
\end{align*}
\]

2) Solve these simultaneous equations.

\[
\begin{align*}
y &= x^2 - 4 \\
y &= 3x \\
x &= 4 \quad \text{and} \quad y = 12 \\
x &= -1 \quad \text{and} \quad y = -3
\end{align*}
\]

3) Solve these simultaneous equations.

\[
\begin{align*}
y &= x^2 - x - 13 \\
y &= x + 2 \\
x &= 5 \quad \text{and} \quad y = 7 \\
x &= -3 \quad \text{and} \quad y = -1
\end{align*}
\]

4) Solve these simultaneous equations.

\[
\begin{align*}
y &= x^2 - 35 \\
x - y &= 5 \\
x &= 6 \quad \text{and} \quad y = 1 \\
x &= -5 \quad \text{and} \quad y = -10
\end{align*}
\]

5) Solve these simultaneous equations.

\[
\begin{align*}
y &= x - 6 \\
x^2 + y^2 &= 26 \\ y + 6 &= x \\
x &= 5 \quad \text{and} \quad y = -1 \\
x &= 1 \quad \text{and} \quad y = -5
\end{align*}
\]

6) Sarah said that the line \(y = 7 \) cuts the curve \(x^2 + y^2 = 25 \) at two points. \(x^2 + 49 = 25 \quad x^2 = -24 \)

a) By eliminating \(y \) show that Sarah is not correct.

There is no solution to \(x^2 = -24 \) hence \(y = 7 \) does not cut the curve.

b) By eliminating \(y \), find the solutions to the simultaneous equations

\[
\begin{align*}
x^2 + y^2 &= 25 \\
y &= 3x - 9 \\
x &= 1.4 \quad \text{and} \quad y = -4.8 \\
x &= 4 \quad \text{and} \quad y = 3
\end{align*}
\]

\[
\begin{align*}
x^2 + (3x - 9)^2 &= 25 \\
x^2 + 9x^2 - 54x + 81 &= 25 \\
10x^2 - 54x + 56 &= 0 \\
x &= 1.4 \quad \text{or} \quad x = 4
\end{align*}
\]
1) A is the point (0, 2)
B is the point (10, 7)

The equation of the straight line through A and B is \(y = \frac{1}{2}x + 2 \)

a) Write down the equation of another straight line that is parallel to \(y = \frac{1}{2}x + 2 \)
\(y = \frac{1}{2}x + c \)
b) Write down the equation of another straight line that passes through the point (0, 2).
\(y = mx + 2 \)
c) Find the equation of the line perpendicular to AB passing through B.
\(y = -2x + 27 \)

2) A straight line has equation \(y = 2x - 5 \)
The point P lies on the straight line.
The y coordinate of P is -6

a) Find the x coordinate of P. \(x = -0.5 \)

A straight line L is parallel to \(y = 2x - 5 \) and passes through the point (3, 2).
b) Find the equation of line L. \(y = 2x - 4 \)
c) Find the equation of the line that is perpendicular to line L and passes through point (3, 2).
\(y = -\frac{1}{2}x + 3\frac{1}{2} \)

3) In the diagram
A is the point (0, -2)
B is the point (-4, 2)
C is the point (0, 2)

a) Find the equation of the line that passes through C and is parallel to AB. \(y = -x + 2 \)
b) Find the equation of the line that passes through C and is perpendicular to AB. \(y = x + 2 \)
1) This is a sketch of the curve with equation \(y = f(x) \).
 It passes through the origin O.
 The only vertex of the curve is at A (1, -1)
 a) Write down the coordinates of the vertex of the curve
 with equation
 (i) \(y = f(x - 3) \) \((4, -1) \)
 (ii) \(y = f(x) - 5 \) \((1, -6) \)
 (iii) \(y = -f(x) \) \((1, 1) \)
 (iv) \(y = f(2x) \) \((\frac{1}{2}, -1) \)
 b) The curve \(y = x^2 \) has been translated to give
 the curve \(y = f(x) \).
 Find \(f(x) \) in terms of \(x \).
 \[y = (x - 1)^2 - 1 \]
 \[y = x^2 - 2x + 1 - 1 \]
 \[y = x^2 - 2x \]

2) The graph of \(y = f(x) \) is shown on the grids.
 a) On this grid, sketch the graph of \(y = f(x - 1) \)
 b) On this grid, sketch the graph of \(y = 2f(x) \)

3) Sketch the graph of \(y = (x - 2)^2 + 3 \)
 State the coordinates of the vertex.
 \[\text{vertex is at (2, 3)} \]

4) Sketch the graph of \(y = x^2 + 4x - 1 \)
 State the coordinates of the vertex and
 the points at which the curve crosses the
 x-axis.
 \[\text{vertex is at (-2, -5)} \]
 crosses x axis at \((\sqrt{5} - 2, 0)\) and \((-\sqrt{5} - 2, 0)\)
1) On the axes below, draw a sketch-graph to show \(y = \sin x \)

Given that \(\sin 30^\circ = 0.5 \), write down the value of:

(i) \(\sin 150^\circ \) \hspace{1cm} 0.5

(ii) \(\sin 330^\circ \) \hspace{1cm} -0.5

2) On the axes below, draw a sketch-graph to show \(y = \cos x \)

Given that \(\cos 60^\circ = 0.5 \), write down the value of:

(i) \(\cos 120^\circ \) \hspace{1cm} -0.5

(ii) \(\cos 240^\circ \) \hspace{1cm} -0.5
1) On the axes below, draw a sketch-graph to show $y = \tan x$

2) Here is the graph of the curve $y = \cos x$ for $0 < x < 360^\circ$.

 a) Use the graph to solve $\cos x = 0.75$ for $0 \leq x \leq 360^\circ$
 $x = 41^\circ$ and 319°

 b) Use the graph to solve $\cos x = -0.75$ for $0 \leq x \leq 360^\circ$
 $x = 138^\circ$ and 221°
1) The diagram below shows the graph of \(y = 2 \sin x \), for values of \(x \) between 0 and 360°.

The curve cuts the x axis at the point A.
The graph has a maximum at the point B.

a) (i) Write down the coordinates of A. (180°, 0)
(ii) Write down the coordinates of B. (90°, 2)

b) On the same diagram, sketch the graph of \(y = 2 \sin x + 1 \) for values of \(x \) between 0 and 360°.

2) The diagram below shows the graph of \(y = \cos ax + b \), for values of \(x \) between 0 and 300°.

Work out the values of \(a \) and \(b \). \(a = 2 \quad b = 3 \)
1) The sketch-graph shows a curve with equation \(y = pq^x \).

The curve passes through the points (1, 3) and (4, 375).

Calculate the value of \(p \) and the value of \(q \).

Using (1, 3)

\[
\begin{align*}
3 &= pq^1 \\
p &= \frac{3}{q}
\end{align*}
\]

Using (4, 375)

\[
\begin{align*}
375 &= pq^4 \\
p &= \frac{3}{q^3}
\end{align*}
\]

Replacing \(p \) with \(\frac{3}{q} \)

\[
\begin{align*}
375 &= \frac{3}{q^3} \\
q^3 &= 125 \\
q &= 5
\end{align*}
\]

\[
\begin{align*}
p &= \frac{3}{q^3} \\
p &= \frac{3}{5}
\end{align*}
\]

\[
\begin{align*}
N &= 400 \times b^t \\
b^2 &= \frac{900}{400} \\
b &= \frac{30}{20} \\
b &= 1.5
\end{align*}
\]

\[
\begin{align*}
N &= 400 \times 1.5^t \\
N &= 400 \times \left(\frac{3}{2} \right)^3 \\
N &= 400 \times \left(\frac{27}{8} \right) \\
N &= 50 \times 27 \\
N &= 1350
\end{align*}
\]
1) Enlarge triangle T by scale factor -2 using coordinates (2, 2) as the centre of enlargement.

2) Describe fully the single transformation which maps triangle T to triangle U.
1) Show that any straight line which passes through the point (1, 1) must intersect the curve with equation $x^2 + y^2 = 9$ at two points.

$x^2 + y^2 = 9$ is a circle with centre $(0, 0)$. Point $(1, 1)$ lies inside the circle. Therefore any point which passes through $(1, 1)$ must intersect the curve at two points.

2) The diagram shows a sketch of a curve. The point $P(x, y)$ lies on the curve. The locus of P has the following property:

The distance of the point P from the point $(0, 3)$ is the same as the distance of the point P from the x-axis.

Show that $y = \frac{x^2 + 9}{6}$

\[
\begin{align*}
 y^2 &= x^2 + (y - 3)^2 \\
 y^2 &= x^2 + y^2 - 6y + 9 \\
 6y &= x^2 + 9 \\
 y &= \frac{x^2 + 9}{6}
\end{align*}
\]
1) Work out the size of the angle marked x. 36.2°
Give your answer correct to one decimal place.

\[
\sin A = \frac{\sin B}{b} = \frac{\sin 30}{11} = \frac{13 \times \sin 30}{11}
\]

2) ABC is a triangle.
AC = 8 cm
BC = 9 cm
Angle ACB = 43°

Calculate the length of AB. 6.30 cm
Give your answer correct to 3 significant figures.

\[
c^2 = a^2 + b^2 - 2ab \cos C
\]
\[
c^2 = 9^2 + 8^2 - 2 \times 9 \times 8 \times \cos 43
\]
\[
c^2 = 39.6851
\]

3) The lengths of the sides of a triangle are 4.1 cm, 5.4 cm and 7.8 cm.
Calculate the size of the largest angle of the triangle. 109.6°
Give your answer correct to 1 decimal place.
\[
A \text{ is the largest angle because it is opposite the largest side.}
\]
\[
\cos A = \frac{b^2 + c^2 - a^2}{2bc}
\]
\[
\cos A = \frac{5.4^2 + 4.1^2 - 7.8^2}{2 \times 5.4 \times 4.1}
\]

4) Find the missing lengths, x cm and y cm, in this triangle. x = 13.9 cm y = 11.3 cm
Give your answers to 3 significant figures.
\[
\frac{b}{\sin 71} = \frac{12.6}{\sin 59}
\]
\[
x = \frac{12.6 \times \sin 71}{\sin 59}
\]
1) The diagram shows a box in the shape of a cuboid.
AB = 6cm, BC = 4cm, CG = 3cm

A string runs diagonally across the box from A to G.

Calculate the length of the string AG.
Give your answer correct to 3 significant figures.

\[AG = \sqrt{6^2 + 4^2 + 3^2} \]

\[AG = 7.81 \text{ cm} \]

2) The diagram shows a box in the shape of a cuboid.
AB = 8cm, BC = 11cm

A string runs diagonally across the box from D to F and is 18cm long.

Calculate the length AE.
Give your answer correct to 3 significant figures.

\[AE = \sqrt{18^2 - 11^2 - 8^2} \]

\[AE = 11.8 \text{ cm} \]

3) The diagram shows a wedge in the shape of a prism.
Angle BFC is a right angle.

String runs diagonally across the wedge from A to C.

\[AC = \sqrt{20^2 + 17^2 + 8^2} \]

Calculate the length AC.
Give your answer correct to 3 significant figures.

\[AC = 27.4 \text{ cm} \]

4) Two points, P and Q, lie on coordinate axes.

Find the distance PQ to 1 decimal place.

\[D^2 = x^2 + y^2 + z^2 \]

P (2, 3, 1) Q (7, 5, 2)

\[D^2 = (7 - 2)^2 + (5 - 3)^2 + (2 - 1)^2 \]

\[D^2 = 5^2 + 2^2 + 1^2 \]

\[D = \sqrt{30} \]

\[D = 5.5 \]
1) The diagram shows a wedge. The base of the wedge is a horizontal rectangle measuring 80 cm by 60 cm. The sloping face ABRS makes an angle of 21° to the horizontal.

Step 1: Find AC using Pythagoras in triangle ABC. Answer: AC = 100 cm

Step 2: Find CR using Tan 21 in triangle BCR. Answer: CR = 30.71 cm

Step 3: Find angle RAC using Tan in triangle RAC. Answer: Angle RAC = 17.1°

Calculate the angle that AR makes with the horizontal plane ABCD. 17.1°
Give your answer correct to 1 decimal place.

2) The diagram shows a box in the shape of a cuboid. A string runs diagonally across the box from C to E.

a) Work out the length of the string CE. 55.9 cm
Give your answer correct to 1 decimal place.

b) Work out the angle between the string CE and the horizontal plane ABCD. Give your answer correct to 1 decimal place. 26.6°

In triangle CAE we have CE = 55.9 cm and AE = 25 cm.
It has a right angle at A.
Use Sin to find the required angle.
Area of Triangles Using $\frac{1}{2}ab\sin C$

1) ABC is a triangle.
AC = 8 cm.
BC = 10 cm
Angle ACB = 42°

Calculate the area of triangle ABC. \(26.8 \text{ cm}^2\)
Give your answer correct to 3 significant figures.

2) ABC is a triangle.
AB = 20 cm.
BC = 18 cm
Angle ABC = 144°

Calculate the area of triangle ABC. \(106 \text{ cm}^2\)
Give your answer correct to 3 significant figures.

3) ABC is a triangle.
AC = 23 cm.
BC = 31 cm
Angle BAC = 54°
Angle ABC = 39°

Calculate the area of triangle ABC. \(356 \text{ cm}^2\)
Give your answer correct to 3 significant figures.
1) A cone has a base radius of 4 cm and a vertical height of 8 cm.
 a) Calculate the volume of the cone. \(134 \text{ cm}^3\)
 Give your answer correct to 3 significant figures.
 b) Use Pythagoras’ Theorem to find the slant height
 of the cone. \(8.9 \text{ cm}\)
 Give your answer correct to 1 decimal place.
 c) Find the curved surface area of the cone. \(112 \text{ cm}^2\)
 Give your answer correct to 3 significant figures.

2) A sphere has a radius of 12 cm.
 a) Calculate the volume of the sphere. \(7240 \text{ cm}^3\)
 Give your answer correct to 3 significant figures.
 b) Find the curved surface area of the sphere. \(1810 \text{ cm}^2\)
 Give your answer correct to 3 significant figures.

3) A cone has a base radius of 8 cm and a slant height of 10 cm.
 Calculate the volume of the cone. \(128\pi \text{ cm}^3\)
 Leave your answer in terms of \(\pi\).

 Find height using Pythagoras
 \[
 \begin{align*}
 10^2 &= 100 \\
 8^2 &= 64 \\
 \sqrt{36} &= 6 \\
 \end{align*}
 \]
 \[
 V = \frac{1}{3}\pi r^2h \\
 = \frac{1}{3}\times\pi\times8^2\times6 \\
 = 128\pi
 \]
1) Find the area of the segment shaded in the diagram below. \[13.7 \text{ cm}^2\]
Give your answer to 3 significant figures.

Area of sector AOB:
\[
\frac{100 \times 3.142 \times 6^2}{360} = 31.42
\]

Area of triangle AOB:
\[
\frac{1}{2} \times 6 \times 6 \times \sin 100 = 17.73
\]

Area of shaded segment:
\[
31.42 - 17.73 = 13.7 \text{ to 3 sig figs.}
\]

2) The diagram shows a cone of height 40 cm and base radius 10 cm. A smaller cone of height 8 cm is removed to form a frustum.

a) Work out the radius r of the base of the smaller cone. \[2 \text{ cm}\]

Calculate, to the nearest cm3

b) The volume of the larger cone. \[4189.3 \text{ cm}^3\]

c) The volume of the smaller cone. \[33.51 \text{ cm}^3\]

d) The volume of the frustum. \[4155.82 \text{ cm}^3\]

similar triangles
1) ABCD is a quadrilateral.

\[AB \parallel DC, \quad DA \parallel CB. \]

Prove that triangle ABD is congruent to triangle CDB.

- \(AB = CD \) (opp. sides of parallelogram are equal)
- \(AD = CB \) (opp. sides of parallelogram are equal)
- DB is a shared side.

Therefore ABD is congruent to CDB (SSS)

2) PQRS is a square.

PTS and SUR are equilateral triangles.

a) Prove that triangle USP is congruent to triangle TSR.

\[US = TS, \quad SP = SR, \quad \text{Angle USP} = 60^\circ + 90^\circ = 150^\circ, \quad \text{Angle TSR} = 60^\circ + 90^\circ = 150^\circ \]

USP is congruent to TSR (SAS)

X is the point such that RUXT is a parallelogram.

b) Prove that UP = UX

\[UP = RT \] (corresponding sides of congruent triangles)
\[RT = UX \] (opp. sides of parallelogram are equal)

Therefore UP = UX
1) The diagram shows a trapezium $PQRS$.
$PQ = a$ and $QR = b$.
PS is three times the length of QR.

Find, in terms of a and b, expressions for

a) $QP = -a$

b) $PR = a + b$

c) $PS = 3b$

d) $QS = 3b - a$

\[QS = QP + PS = -a + 3b \]

\[\begin{align*}
 QC &= QR + RQ \\
 &= b + a \\
 &= a + b \\
 \end{align*} \]

2) In triangle ABC, P and Q are the midpoints of AB and AC.

$AP = p$ and $AQ = q$.

a) Find, in terms of p and q, expressions for

(i) $PQ = q - p$

(ii) $AB = 2p$

(iii) $AC = 2q$

(iv) $BC = 2q - 2p$

b) Use your results from (a) to prove that PQ is parallel to BC.

\[PQ = q - p \]

\[BC = 2q - 2p = 2(q - p) \]

Therefore PQ is parallel to BC.

3) OAB is a triangle.

D is the midpoint of OB.

C is the midpoint of AB.

$OA = a$ and $OB = b$.

\[OC = \frac{1}{2}(a + b) \]

(i) Find OC in terms of a and b.

(ii) Show that DC is parallel to OA.

\[DA = a \]

\[DC = DO + OC = \frac{1}{2}b + \frac{1}{2}(a + b) = \frac{1}{2}a \]

Therefore DC is parallel to OA.

Diagram NOT accurately drawn.
1) PQRSTU is a regular hexagon.

\[\overrightarrow{PQ} = p \quad \overrightarrow{QR} = q \quad \overrightarrow{PS} = 2q \]

a) Find the vector \(\overrightarrow{PR} \) in terms of \(p \) and \(q \).

\[\overrightarrow{PR} = \overrightarrow{RX} \]

b) Prove that PQ is parallel to SX

\[\overrightarrow{PR} = p + q \]
\[\overrightarrow{SX} = \overrightarrow{SP} + \overrightarrow{PX} \]
\[= \overrightarrow{SP} + 2\overrightarrow{PR} \]
\[= -2q + 2(p + q) \]
\[= -2q + 2p + 2q \]
\[= 2p \]
Therefore \(\overrightarrow{PQ} \) is parallel to \(\overrightarrow{SX} \)

2) \(ABCD \) is a trapezium with \(BC \) parallel to \(AD \).

\[\overrightarrow{AB} = 3b \quad \overrightarrow{BC} = 3a \quad \overrightarrow{AD} = 9a \]

M is the midpoint of \(BC \) and N is the midpoint of \(AD \).

a) Find the vector \(\overrightarrow{MN} \) in terms of \(a \) and \(b \).

\[\overrightarrow{MN} = 3a - 3b \]

\(X \) is the midpoint of \(MN \) and \(Y \) is the midpoint of \(CD \).

b) Prove that \(\overrightarrow{XY} \) is parallel to \(\overrightarrow{AD} \).

\[\overrightarrow{XY} = \overrightarrow{XN} + \overrightarrow{ND} + \overrightarrow{DY} \]
\[= \frac{1}{2}\overrightarrow{MN} + \frac{1}{2}\overrightarrow{ND} + \overrightarrow{DY} \]
\[= \frac{1}{2}(3a - 3b) + 4\frac{1}{2}a + \overrightarrow{DY} \]
\[= 6a - 1\frac{1}{2}b + \overrightarrow{DY} \]
\[\overrightarrow{DY} = \frac{1}{2}\overrightarrow{DC} \]
\[= \frac{1}{2}(\overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BC}) \]
\[= -4\frac{1}{2}a + 1\frac{1}{2}b + 1\frac{1}{2}a \]
\[= 1\frac{1}{2}b - 3a \]
\[\overrightarrow{XY} = 6a - 1\frac{1}{2}b + 1\frac{1}{2}b - 3a \]
\[= 3a \]
Therefore \(\overrightarrow{XY} \) is parallel to \(\overrightarrow{AD} \)
1. The table gives information about the heights, in centimetres, of some 18 year old students. Use the table to draw a histogram.

<table>
<thead>
<tr>
<th>Height (h cm)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>135 < h ≤ 145</td>
<td>12</td>
</tr>
<tr>
<td>145 < h ≤ 165</td>
<td>46</td>
</tr>
<tr>
<td>165 < h ≤ 180</td>
<td>45</td>
</tr>
<tr>
<td>180 < h ≤ 190</td>
<td>25</td>
</tr>
<tr>
<td>190 < h ≤ 195</td>
<td>4</td>
</tr>
</tbody>
</table>

2. The histogram shows the amount of time, in hours, that students spend on their homework per week. Use the histogram to complete the table.

Frequency density = \(\frac{\text{Frequency}}{\text{Class width}} \)

From the numbers in the table: Frequency density = \(\frac{27}{1} = 27 \)

<table>
<thead>
<tr>
<th>Time (t hours)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < t ≤ 0.5</td>
<td>5</td>
</tr>
<tr>
<td>0.5 < t ≤ 1</td>
<td>12</td>
</tr>
<tr>
<td>1 < t ≤ 2</td>
<td>34</td>
</tr>
<tr>
<td>2 < t ≤ 3</td>
<td>27</td>
</tr>
<tr>
<td>3 < t ≤ 5</td>
<td>8</td>
</tr>
</tbody>
</table>
1) Jordan designs a game for a school fair. He has two 8-sided spinners. The spinners are equally likely to land on each of their sides.

One spinner has 3 blue sides, 2 yellow sides and 3 white sides. The other spinner has 2 blue sides, 2 green sides and 4 white sides.

Calculate the probability that the two spinners will land on the same colour. \(\frac{18}{64} \) or \(\frac{9}{32} \)

- **Blue and Blue**: \(\frac{3}{8} \times \frac{2}{8} = \frac{6}{64}
- **Blue and Blue OR White and White**: \(\frac{6}{64} + \frac{12}{64} = \frac{18}{64}
- **White and White**: \(\frac{3}{8} \times \frac{4}{8} = \frac{12}{64}

2) The probability that it will snow in Paris on Christmas day is 0.06.
 a) Work out the probability that it will snow in Paris on **both** Christmas day 2008 and Christmas day 2009.

 - **0.0036** = 0.06 \(\times \) 0.06

 b) Work out the probability that it will snow in Paris on **either** Christmas Day 2008 or Christmas Day 2009, but **not** on both.

 - **0.1128** = 0.06 \(\times \) 0.94 + 0.94 \(\times \) 0.06

3) A bag contains 2 black beads, 5 yellow beads and 3 red beads. Natalie takes a bead at random from the bag, records its colour and replaces it. She does this two more times.

Work out the probability that, of the three beads Natalie takes, exactly two are the same colour. \(\frac{660}{1000} \) (or any equivalent fraction)

\[
P(\text{two same colour}) = 1 - P(\text{BBB}) - P(\text{YYY}) - P(\text{RRR}) - P(\text{BYR}) - P(\text{BRY}) - P(\text{YBR}) - P(\text{YRB}) - P(\text{RYB}) - P(\text{RBY})\]

\[
= 1 - \frac{8}{1000} - \frac{125}{1000} - \frac{27}{1000} - \frac{30}{1000} - \frac{30}{1000} - \frac{30}{1000} - \frac{30}{1000} - \frac{30}{1000} - \frac{30}{1000} \]

\[
= 1 - \frac{340}{1000}
\]
Stratified Sampling

1) The table below shows the number of employees in each section of a company.

<table>
<thead>
<tr>
<th>Department</th>
<th>Managerial</th>
<th>Sales</th>
<th>Technical</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of employees</td>
<td>18</td>
<td>45</td>
<td>288</td>
<td>549</td>
</tr>
</tbody>
</table>

A survey on job satisfaction is to be carried out.

a) Explain why a simple random sample of employees is unsuitable.
 The numbers in each department are very different - it might not be fair.

b) A stratified random sample of 100 is used. Complete the table below to show how
 many employees from each department will be included.

\[
\begin{array}{c|c|c|c|c}
\text{Department} & \text{Managerial} & \text{Sales} & \text{Technical} & \text{Production} \\
\hline
\text{Number of employees in sample} & 2 & 5 & 32 & 61 \\
\end{array}
\]

\[
\frac{100}{900} \times 18 \quad \frac{100}{900} \times 45 \quad \frac{100}{900} \times 288 \quad \frac{100}{900} \times 549
\]

2) MathsWatch High-School has 798 pupils. The size of each year group is shown below.

<table>
<thead>
<tr>
<th>Year Group</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>77</td>
<td>72</td>
</tr>
<tr>
<td>8</td>
<td>74</td>
<td>79</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
<td>74</td>
</tr>
<tr>
<td>10</td>
<td>93</td>
<td>107</td>
</tr>
<tr>
<td>11</td>
<td>85</td>
<td>65</td>
</tr>
</tbody>
</table>

The headteacher wants to find out the opinions of the pupils on changing the
timing of the school day. A stratified sample of 80 pupils is taken.

a) Complete the table below to show the numbers of pupils to be sampled.

\[
\begin{array}{c|c|c}
\text{Year Group} & \text{Boys in Sample} & \text{Girls in Sample} \\
\hline
7 & \frac{70}{798} \times 77 & \frac{70}{798} \times 72 \\
8 & \frac{80}{798} \times 74 & \frac{80}{798} \times 79 \\
9 & \frac{80}{798} \times 72 & \frac{80}{798} \times 74 \\
10 & \frac{80}{798} \times 93 & \frac{80}{798} \times 107 \\
11 & \frac{80}{798} \times 85 & \frac{80}{798} \times 65 \\
\end{array}
\]

The table below shows the number of pupils in the sample who answered YES to a
change in the timing of the school day.

\[
\begin{array}{c|c|c}
\text{Year Group} & \text{Boys in Sample who answered YES} & \text{Girls in Sample who answered YES} \\
\hline
7 & 2 & 3 \\
8 & 3 & 5 \\
9 & 2 & 1 \\
10 & 1 & 4 \\
11 & 0 & 1 \\
\end{array}
\]

\[
8 + 14 = 22 \quad \text{answered YES} \quad \frac{22}{80} \times 100 = 27.5
\]

b) Use the table to estimate the percentage of pupils in the school who would answer
YES to the question. 27.5%
A

Addition and subtraction of fractions 51
Algebraic fractions 155
Algebraic simplification 94, 95
Alternate angles 62
And & Or probability questions 176
Angle sum of triangles 63, 64
Angles - alternate 62
Angles measuring and drawing 74
Angles of regular polygons 65
Area of circles 66
Area of compound shapes 68
Area of triangles using \(\frac{1}{2}ab\sin C \) 169
Averages from a table 126

B

Bearings 124
Bearings by trigonometry 140
Bisecting a line 119
Bisecting an angle 121
BODMAS 54
Bounds 117, 152
Box plots 145

C

Calculator questions 58
Change a fraction to a decimal 53
Change to a percentage with a calculator 49
Change to a percentage without a calculator 49
Changing the subject of a formula 99
Changing the subject of difficult formulae 156
Circle theorems 143
Circles - area of 66
Circles - circumference of 67
Circles and loci 165
Completing the square 154
Compound interest/depreciation 130
Compound measures 118
Compound shapes - area of 68
Cones and spheres 170
Congruent triangles 172
Constructions - bisecting a line 119
Constructions - bisecting an angle 121
Constructions - drawing angles 74
Constructions - drawing nets 77
Constructions - drawing triangles 75
Constructions - perpendicular to a line 120
Constructions - plans and elevations 76
Converting metric measures 116
Coordinates in 3D 141
Correlation 82
Cosine rule 166
Cube root 45
Cubic and reciprocal functions 138
Cuboids - surface area 112
Cumulative frequency 144

D

Data collection 79
Decimals - dividing by 92
Difference of two squares 134
Direct and inverse proportion 151
Division of fractions 52
Division with decimals 92
Division with negatives 92
Drawing a perpendicular to a line 120
Drawing angles 74
Drawing quadratic graphs 108
Drawing straight line graphs 105
Drawing triangles 75

E

Enlargement by negative scale factor 164
Enlargements 71
Equation of a straight line 106
Equations - forming and solving 98
Equations - solving 97
Equations of circles and loci 165
Equivalent fractions 46
Estimate of the mean 126
Estimation 93
Evaluate powers, squares, cubes & roots 45
Expanding and simplifying brackets 94, 95
Experimental probabilities 125
Exponential functions 163

F

Factorisation - simple 96
Factorisation of quadratics 133
Factors, multiples and primes 44
Find a percentage with a calculator 48
Find a percentage without a calculator 48
Find the mid-point of a line 73
Finding the equation of a straight line 106
Forming equations 98
Formulae - rearranging 99, 156
Four rules of fractions 132
Four rules of negatives 92
Fraction of an amount 50
Fractional and negative indices 149
Fractions - adding and subtracting 51
Fractions - algebraic 155
Fractions - change to a decimal 53
Fractions - four rules of 132
Fractions - multiply and divide 52
Fractions - ordering 46
Fractions - simplifying 46
Frequency diagrams 83
Frequency simplifying 46
Frustums 171

G

Gradients of lines - grade A questions 158
Gradients of lines - grade B questions 136
Graphs - straight lines 105
Graphs - travel graphs 109
Graphs of exponential functions 163
Graphs of trigonometric functions 160, 161

H
Hard calculator questions 58
Highest common factor 89
Histograms 175

I
Increase/decrease by a percentage 87
Index notation for multiplication and division 103
Indices 45, 103
Inequalities - on a line 100
Inequalities - regions 137
Inequalities - solving 101
Inverse proportion 151

L
Limits of accuracy 117, 152
List of outcomes 85
Loci 122, 123
Loci - algebraically 165
Long multiplication of decimals 55
Lower and upper bounds 117, 152
Lowest common multiple 89

M
Mean 126
Measuring and drawing angles 74
Median 126
Metric measures 116
Mid-point of a line 73
Mixed numbers 51, 132
Mode 126
Money - value for 47
Money questions 59
Multiples 44
Multiplication & division with negatives 92
Multiplication and division of fractions 52, 132
Multiplication and division with decimals 92
Multiplication of decimals 55
Mutually exclusive events 85

N
Negative indices 149
Negatives - four rules of 92
Nets 77
Nth term 60, 104
Number sequences 60, 104

O
Or probability questions 176
Ordering fractions 46
Outcomes - listing 85
Overview of percentages 86

P
Patterns - find the nth term 60
Percentage increase and decrease 129
Percentages - change and decrease 87
Percentages - change to a percentage 49
Percentages - change to, with calculator 49
Percentages - change to, without calculator 49
Percentages - compound interest 130
Percentages - find with calculator 48
Percentages - find without calculator 48
Percentages - mixture of questions 86
Perpendicular to a line 120
Pie charts 81
Place value when multiplying 90
Planes of symmetry 78
Plans and elevations 76
Polygons - interior and exterior angles 65
Powers 45, 103
Prime factors 89
Primes 44
Prisms 112, 113, 114
Probability - And & Or questions 176
Probability - experimental 125
Probability - mutually exclusive events 85
Product of prime factors 89
Proportion 151
Pythagoras 110
Pythagoras - line on a graph 111
Pythagoras in 3D 167

Q
Quadratic equations - completing the square 154
Quadratic equations - solve by factorising 133
Quadratic equations - solve with formula 153
Quadratic graphs 108
Questionnaires and data collection 79, 127

R
Range 126
Ratio 56, 88
Ratio - recipe questions 57
Rationalising the denominator 150
Real-life graphs 109
Real-life money questions 59
Rearranging formulae 99, 156
Recipe-type ratio questions 57
Reciprocal functions 138
Recognise the shapes of functions 139
Recurring decimals 91, 148
Reflections 70
Regions 137
Reverse percentages 131
Roots 45
Rotational symmetry 78
Rotations 69

S
Sampling 177
Scatter graphs 82
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segments and frustums</td>
<td>171</td>
</tr>
<tr>
<td>Sequences</td>
<td>60, 104</td>
</tr>
<tr>
<td>Shapes of functions</td>
<td>139</td>
</tr>
<tr>
<td>Similar shapes</td>
<td>115, 142</td>
</tr>
<tr>
<td>Simplifying algebraic expressions</td>
<td>94, 95</td>
</tr>
<tr>
<td>Simplifying algebraic fractions</td>
<td>155</td>
</tr>
<tr>
<td>Simplifying and ordering fractions</td>
<td>46</td>
</tr>
<tr>
<td>Simultaneous equations graphically</td>
<td>107</td>
</tr>
<tr>
<td>Simultaneous equations with a quadratic</td>
<td>157</td>
</tr>
<tr>
<td>Simultaneous linear equations</td>
<td>135</td>
</tr>
<tr>
<td>Sine and cosine rules</td>
<td>166</td>
</tr>
<tr>
<td>Solving quadratics by factorising</td>
<td>133</td>
</tr>
<tr>
<td>Solving quadratics by completing the square</td>
<td>154</td>
</tr>
<tr>
<td>Solve quadratics using the formula</td>
<td>153</td>
</tr>
<tr>
<td>Solving equations</td>
<td>97, 98</td>
</tr>
<tr>
<td>Solving inequalities</td>
<td>101</td>
</tr>
<tr>
<td>Spheres - finding volume of</td>
<td>170</td>
</tr>
<tr>
<td>Squares, cubes & roots</td>
<td>45</td>
</tr>
<tr>
<td>Standard form</td>
<td>90, 128</td>
</tr>
<tr>
<td>Stem and leaf diagrams</td>
<td>84</td>
</tr>
<tr>
<td>Straight line graphs - drawing</td>
<td>105</td>
</tr>
<tr>
<td>Straight line graphs - finding equation of</td>
<td>106, 136</td>
</tr>
<tr>
<td>Stratified sampling</td>
<td>177</td>
</tr>
<tr>
<td>Subject of a formula</td>
<td>99, 156</td>
</tr>
<tr>
<td>Substitution</td>
<td>61</td>
</tr>
<tr>
<td>Surds</td>
<td>150</td>
</tr>
<tr>
<td>Surface area of cuboids</td>
<td>112</td>
</tr>
<tr>
<td>Surface area of prisms</td>
<td>113</td>
</tr>
<tr>
<td>Symmetries</td>
<td>78</td>
</tr>
<tr>
<td>Transformation - enlargement</td>
<td>71</td>
</tr>
<tr>
<td>Transformation - reflection</td>
<td>70</td>
</tr>
<tr>
<td>Transformation - rotation</td>
<td>69</td>
</tr>
<tr>
<td>Transformation - translation</td>
<td>72</td>
</tr>
<tr>
<td>Transformation of functions</td>
<td>159</td>
</tr>
<tr>
<td>Transformation of trigonometric functions</td>
<td>162</td>
</tr>
<tr>
<td>Translations</td>
<td>72</td>
</tr>
<tr>
<td>Tree diagrams</td>
<td>146, 147</td>
</tr>
<tr>
<td>Trial and improvement</td>
<td>102</td>
</tr>
<tr>
<td>Trigonometric functions - graphs of</td>
<td>160, 161</td>
</tr>
<tr>
<td>Trigonometric functions - transformations</td>
<td>162</td>
</tr>
<tr>
<td>Trigonometry - finding sides and angles</td>
<td>140</td>
</tr>
<tr>
<td>Trigonometry - to find bearings</td>
<td>140</td>
</tr>
<tr>
<td>Trigonometry in 3D</td>
<td>168</td>
</tr>
<tr>
<td>Two-way tables</td>
<td>80</td>
</tr>
<tr>
<td>Understand $y = mx + c$</td>
<td>136</td>
</tr>
<tr>
<td>Units of measurement</td>
<td>116</td>
</tr>
<tr>
<td>Upper and lower bounds</td>
<td>117, 152</td>
</tr>
<tr>
<td>Value for money</td>
<td>47</td>
</tr>
<tr>
<td>Vectors</td>
<td>173, 174</td>
</tr>
<tr>
<td>Volume of a prism</td>
<td>114</td>
</tr>
<tr>
<td>$y = mx + c$</td>
<td>106, 136, 158</td>
</tr>
</tbody>
</table>